-
- Cristiano Alicino, Nicola Luigi Bragazzi, Valeria Faccio, Daniela Amicizia, Donatella Panatto, Roberto Gasparini, Giancarlo Icardi, and Andrea Orsi.
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, 16132, Italy. cristiano.alicino@unige.it.
- Infect Dis Poverty. 2015 Dec 10; 4: 54.
BackgroundThe 2014 Ebola epidemic in West Africa has attracted public interest worldwide, leading to millions of Ebola-related Internet searches being performed during the period of the epidemic. This study aimed to evaluate and interpret Google search queries for terms related to the Ebola outbreak both at the global level and in all countries where primary cases of Ebola occurred. The study also endeavoured to look at the correlation between the number of overall and weekly web searches and the number of overall and weekly new cases of Ebola.MethodsGoogle Trends (GT) was used to explore Internet activity related to Ebola. The study period was from 29 December 2013 to 14 June 2015. Pearson's correlation was performed to correlate Ebola-related relative search volumes (RSVs) with the number of weekly and overall Ebola cases. Multivariate regression was performed using Ebola-related RSV as a dependent variable, and the overall number of Ebola cases and the Human Development Index were used as predictor variables.ResultsThe greatest RSV was registered in the three West African countries mainly affected by the Ebola epidemic. The queries varied in the different countries. Both quantitative and qualitative differences between the affected African countries and other Western countries with primary cases were noted, in relation to the different flux volumes and different time courses. In the affected African countries, web query search volumes were mostly concentrated in the capital areas. However, in Western countries, web queries were uniformly distributed over the national territory. In terms of the three countries mainly affected by the Ebola epidemic, the correlation between the number of new weekly cases of Ebola and the weekly GT index varied from weak to moderate. The correlation between the number of Ebola cases registered in all countries during the study period and the GT index was very high.ConclusionGoogle Trends showed a coarse-grained nature, strongly correlating with global epidemiological data, but was weaker at country level, as it was prone to distortions induced by unbalanced media coverage and the digital divide. Global and local health agencies could usefully exploit GT data to identify disease-related information needs and plan proper communication strategies, particularly in the case of health-threatening events.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.