• Medicina · Jan 2003

    Review

    [Gas exchange in acute respiratory distress syndrome].

    • Guillermo A Raimondi.
    • Instituto Raúl Carrea FLENI. Montañeses 2325, C1428AQK Buenos Aires, Argentina. raimondi@fleni.org.ar
    • Medicina (B Aires). 2003 Jan 1; 63 (2): 157-64.

    AbstractThe hypoxemia of acute respiratory distress syndrome (ARDS) depends chiefly upon shunt and ventilation-perfusion (VA/Q) inequality produced by fluid located in the interstitial space, alveolar collapse and flooding. Variables other tham inspired oxygen fraction and the underlying physiological abnormality can influence arterial oxygen partial pressure (PaO2). Changes in cardiac output, hemoglobin concentration, oxygen consumption and alcalosis can cause changes in PaO2 through their influence on mixed venous PO2. Gas exchange (GE) in ARDS may be studied using the inert gas elimination technique (MIGET) which enables to define the distribution of ventilation and perfusion without necessarily altering the FIO2 differentiating shunt from lung units with low VA/Q ratios and dead space from lung units with high VA/Q ratios. Different ventilatory strategies that increase mean airway pressure (positive end-expiratory pressure, high tidal volumes, inverse inspiratory-expiratory ratio, etc) improve PaO2 through increasing lung volume by recruiting new open alveoli and spreading the intra-alveolar fluid over a large surface area. Also prone-position ventilation would result in a marked improvement in GE enhancing dorsal lung ventilation by the effects on the gravitional distribution of pleural pressure and the reduction in the positive pleural pressure that develops in dorsal regions in ARDS. Inhaled nitric oxide (NO) has been shown to increase PaO2 in ARDS patients by inducing vasodilation predominantly in ventilated areas redistributing pulmonary blood flow away from nonventilated toward ventilated areas of the lung thus resulting in a shunt reduction. On the same way inhaled prostaglandins (PGI2 or PGE1) causes selective pulmonary vasodilation improving pulmonary GE. Intravenous almitrine, a selective pulmonary vasoconstrictor, has been shown to increase PaO2 by increasing hypoxic pulmonary vasoconstriction. A synergistic effect was found between inhaled NO and almitrine. In spite of the improval of GE shown by these different techniques on ARDS, no effect was demonstrated on mortality or duration of mechanical ventilation.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.