• Annals of neurology · Dec 2011

    Early factors associated with axonal loss after optic neuritis.

    • Andrew P D Henderson, Daniel R Altmann, S Anand Trip, Katherine A Miszkiel, Patricio G Schlottmann, Steve J Jones, David F Garway-Heath, Gordon T Plant, and David H Miller.
    • NMR Research Unit, University College London, Institute of Neurology, London, United Kingdom. a.henderson@ucl.ac.uk
    • Ann. Neurol. 2011 Dec 1;70(6):955-63.

    ObjectiveAcute optic neuritis due to an inflammatory demyelinating lesion of the optic nerve is often seen in association with multiple sclerosis. Although functional recovery usually follows the acute episode of visual loss, persistent visual deficits are common and are probably due to axonal loss. The mechanisms of axonal loss and early features that predict it are not well defined. We investigated clinical, electrophysiological, and imaging measures at presentation and after 3 months as potential markers of axonal loss following optic neuritis.MethodsWe followed 21 patients after their first attack of acute unilateral optic neuritis for up to 18 months. Axonal loss was inferred from optical coherence tomography measures of retinal nerve fiber layer (RNFL) thickness at least 6 months following the episode. Visual function, visual evoked potential, and optic nerve magnetic resonance imaging measures obtained during the acute episode and 3 months later were investigated for their association with later axonal loss.ResultsAfter multivariate analysis, prolonged visual evoked potential latency and impaired color vision, at baseline and after 3 months, were significantly and independently associated with RNFL thinning. Low-contrast acuity measures exhibited significant univariate associations with RNFL thinning.InterpretationThe association of RNFL loss with a prolonged visual evoked potential (VEP) latency suggests that acute and persistent demyelination is associated with increased vulnerability of axons. VEP latency and visual function tests that capture optic nerve function, such as color and contrast, may help identify subjects with a higher risk for axonal loss who are thus more suitable for experimental neuroprotection trials.Copyright © 2011 American Neurological Association.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.