-
- A Vleeming, A L Pool-Goudzwaard, R Stoeckart, J P van Wingerden, and C J Snijders.
- Department of Anatomy, Faculty of Medicine and Allied Health Sciences, Erasmus University Rotterdam, The Netherlands.
- Spine. 1995 Apr 1;20(7):753-8.
Study DesignThe superficial and deep lamina of the posterior layer of the thoracolumbar fascia have been studied anatomically and biomechanically. In embalmed human specimens, the posterior layer has been loaded by simulating the action of various muscles. The effect has been studied using raster photography.ObjectivesTo study the role of the posterior layer of the thoracolumbar fascia in load transfer between spine, pelvis, legs, and arms.Summary Of Background DataIt has been determined whether muscles such as the gluteus maximus, latissimus dorsi, erector muscle, and biceps femoris are functionally coupled via the thoracolumbar fascia. The caudal relations of the posterior layer of the thoracolumbar fascia have not been previously studied.MethodsDissection was directed to the bilaminar posterior layer of the thoracolumbar fascia of 10 human specimens. The superficial and deep lamina were studied using visual inspection and raster photography. Tension to the posterior layer of the fascia was simulated by traction to various muscles and measured by studying the displacement in the posterior layer.ResultsTraction to a variety of muscles caused displacement of the posterior layer. This implies that in vivo, the superficial lamina will be tensed by contraction of various muscles, such as the latissimus dorsi, gluteus maximus and erector muscle, and the deep lamina by contraction of the biceps femoris. Caudal to the level of L4 (in some specimens, L2-L3), tension in the posterior layer was transmitted to the contralateral side.ConclusionsAnatomic structures normally described as hip, pelvic, and leg muscles interact with so-called arm and spinal muscles via the thoracolumbar fascia. This allows for effective load transfer between spine, pelvis, legs, and arms--an integrated system. Specific electromyographic studies should reveal whether the gluteus maximus muscle and contralateral latissimus dorsi muscle are functionally coupled, especially during rotation of the trunk. In that case, the combined action of these muscles assists in rotating the trunk, while simultaneously stabilizing the lower lumbar spine and sacroiliac joints.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.