• Anesthesiology · Mar 2010

    Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia.

    • Paul Banks, Nicholas P Franks, and Robert Dickinson.
    • Biophysics Section, Blackett Laboratory, Department of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London SW7 2AZ, United Kingdom.
    • Anesthesiology. 2010 Mar 1;112(3):614-22.

    BackgroundThe general anesthetic gas xenon is neuroprotective and is undergoing clinical trials as a treatment for ischemic brain injury. A small number of molecular targets for xenon have been identified, the N-methyl-D-aspartate (NMDA) receptor, the two-pore-domain potassium channel TREK-1, and the adenosine triphosphate-sensitive potassium channel (KATP). However, which of these targets are relevant to acute xenon neuroprotection is not known. Xenon inhibits NMDA receptors by competing with glycine at the glycine-binding site. We test the hypothesis that inhibition of the NMDA receptor at the glycine site underlies xenon neuroprotection against hypoxia-ischemia.MethodsWe use an in vitro model of hypoxia-ischemia to investigate the mechanism of xenon neuroprotection. Organotypic hippocampal brain slices from mice are subjected to oxygen-glucose deprivation, and injury is quantified by propidium iodide fluorescence.ResultsWe show that 50% atm xenon is neuroprotective against hypoxia-ischemia when applied immediately after injury or after a delay of 3 h after injury. To validate our method, we show that neuroprotection by gavestinel is abolished when glycine is added, confirming that NMDA receptor glycine site antagonism underlies gavestinel neuroprotection. We then show that adding glycine abolishes the neuroprotective effect of xenon, consistent with competitive inhibition at the NMDA receptor glycine site mediating xenon neuroprotection.ConclusionsWe show that xenon neuroprotection against hypoxia- ischemia can be reversed by increasing the glycine concentration. This is consistent with competitive inhibition by xenon at the NMDA receptor glycine site, playing a significant role in xenon neuroprotection. This finding may have important implications for xenon's clinical use as an anesthetic and neuroprotectant.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…