• J Gen Intern Med · Jul 2011

    Inability of providers to predict unplanned readmissions.

    • Nazima Allaudeen, Jeffrey L Schnipper, E John Orav, Robert M Wachter, and Arpana R Vidyarthi.
    • Department of Medicine, VA-Palo Alto Healthcare System, 3801 Miranda Ave, MC 111, Palo Alto, CA 94304, USA. nazima.allaudeen@va.gov
    • J Gen Intern Med. 2011 Jul 1;26(7):771-6.

    BackgroundReadmissions cause significant distress to patients and considerable financial costs. Identifying hospitalized patients at high risk for readmission is an important strategy in reducing readmissions. We aimed to evaluate how well physicians, case managers, and nurses can predict whether their older patients will be readmitted and to compare their predictions to a standardized risk tool (Probability of Repeat Admission, or P(ra)).MethodsPatients aged ≥ 65 discharged from the general medical service at University of California, San Francisco Medical Center, a 550-bed tertiary care academic medical center, were eligible for enrollment over a 5-week period. At the time of discharge, the inpatient team members caring for each patient estimated the chance of unscheduled readmission within 30 days and predicted the reason for potential readmission. We also calculated the P(ra) for each patient. We identified readmissions through electronic medical record (EMR) review and phone calls with patients/caregivers. Discrimination was determined by creating ROC curves for each provider group and the P(ra).ResultsOne hundred sixty-four patients were eligible for enrollment. Of these patients, five died during the 30-day period post-discharge. Of the remaining 159 patients, 52 patients (32.7%) were readmitted. Mean readmission predictions for the physician providers were closest to the actual readmission rate, while case managers, nurses, and the P(ra) all overestimated readmissions. The ability to discriminate between readmissions and non-readmissions was poor for all provider groups and the P(ra) (AUC from 0.50 for case managers to 0.59 for interns, 0.56 for P(ra)). None of the provider groups predicted the reason for readmission with accuracy.ConclusionsThis study found (1) overall readmission rates were higher than previously reported, possibly because we employed a more thorough follow-up methodology, and (2) neither providers nor a published algorithm were able to accurately predict which patients were at highest risk of readmission. Amid increasing pressure to reduce readmission rates, hospitals do not have accurate predictive tools to guide their efforts.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.