• World Neurosurg · Apr 2016

    Review

    The impact of hypoxia and mesenchymal transition on glioblastoma pathogenesis and cancer stem cells regulation.

    • Michael Karsy, Jian Guan, Randy Jensen, L Eric Huang, and Howard Colman.
    • Department of Neurosurgery, Clinical Neurosciences Center, Salt Lake City, Utah, USA.
    • World Neurosurg. 2016 Apr 1; 88: 222-236.

    AbstractGlioblastoma (GBM) is an aggressive primary brain tumor with potential for wide dissemination and resistance to standard treatments. Although GBM represents a single histopathologic diagnosis under current World Health Organization criteria, data from multiplatform molecular profiling efforts, including The Cancer Genome Atlas, indicate that multiple subgroups with distinct markers and biology exist. It remains unclear whether treatment resistance differs based on subgroup. Recent evidence suggests that hypoxia, or absence of normal tissue oxygenation, is important in generating tumor resistance through a signaling cascade driven by hypoxia-inducible factors and vascular endothelial growth factor. Hypoxia can result in isolation of tumor cells from therapeutic agents and activation of downstream tumor protective mechanisms. In addition, there are links between hypoxia and the phenomenon of mesenchymal transition in gliomas. Mesenchymal transformation in gliomas resembles at many levels the epithelial-mesenchymal transition that has been described in other solid tumors in which epithelial cells lose their epithelial characteristics and take on a more mesenchymal phenotype, but the mesenchymal transition in brain tumors is also distinct, perhaps related to the unique cell types and cellular organization in the brain and brain tumors. Cancer stem cells, which are specific cell populations involved in self-renewal, differentiation, and GBM pathophysiology, are also importantly regulated by hypoxia signaling pathways. In this review, we discuss the interplay of hypoxia and mesenchymal signaling in GBM including the key pathway regulators and downstream genes, the effect of these processes in regulation of the tumor microenvironment and cancer stem cells, and their role in treatment resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.