-
Arterioscler. Thromb. Vasc. Biol. · Apr 2014
Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5' adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor δ pathway.
- Wai San Cheang, Xiao Yu Tian, Wing Tak Wong, Chi Wai Lau, Susanna Sau-Tuen Lee, Zhen Yu Chen, Xiaoqiang Yao, Nanping Wang, and Yu Huang.
- From Institute of Vascular Medicine, Shenzhen Research Institute, and Li Ka Shing Institute of Health Sciences (W.S.C., X.Y.T., C.W.L., X.Y., Y.H.), and School of Life Sciences (S.S.-T.L., Z.Y.C.), Chinese University of Hong Kong, Hong Kong, China; Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX (X.Y.T., W.T.W.); and Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China (N.W.).
- Arterioscler. Thromb. Vasc. Biol. 2014 Apr 1;34(4):830-6.
Objective5' Adenosine monophosphate-activated protein kinase (AMPK) interacts with peroxisome proliferator-activated receptor δ (PPARδ) to induce gene expression synergistically, whereas the activation of AMPK inhibits endoplasmic reticulum (ER) stress. Whether the vascular benefits of antidiabetic drug metformin (AMPK activator) in diabetes mellitus and obesity is mediated by PPARδ remains unknown. We aim to investigate whether PPARδ is crucial for metformin in ameliorating ER stress and endothelial dysfunction induced by high-fat diet.Approach And ResultsAcetylcholine-induced endothelium-dependent relaxation in aortae was measured on wire myograph. ER stress markers were determined by Western blotting. Superoxide production in mouse aortae and NO generation in mouse aortic endothelial cells were assessed by fluorescence imaging. Endothelium-dependent relaxation was impaired and ER stress markers and superoxide level were elevated in aortae from high-fat diet-induced obese mice compared with lean mice. These effects of high-fat diet were reversed by oral treatment with metformin in diet-induced obese PPARδ wild-type mice but not in diet-induced obese PPARδ knockout littermates. Metformin and PPARδ agonist GW1516 reversed tunicamycin (ER stress inducer)-induced ER stress, oxidative stress, and impairment of endothelium-dependent relaxation in mouse aortae as well as NO production in mouse aortic endothelial cells. Effects of metformin were abolished by cotreatment of GSK0660 (PPARδ antagonist), whereas effects of GW1516 were unaffected by compound C (AMPK inhibitor).ConclusionsMetformin restores endothelial function through inhibiting ER stress and oxidative stress and increasing NO bioavailability on activation of AMPK/PPARδ pathway in obese diabetic mice.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.