-
J Clin Monit Comput · Apr 2007
New metabolic lung simulator: development, description, and validation.
- Abraham Rosenbaum, Christopher Kirby, and Peter H Breen.
- Department of Anesthesiology UCI Medical Center, University of California, Irvine, Building 53, Room 227, 101 The City Drive South, Orange, CA 92868, USA.
- J Clin Monit Comput. 2007 Apr 1;21(2):71-82.
ObjectiveIndirect calorimetry, the determination of airway carbon dioxide elimination (V(CO2),and oxygen uptake (V(O2)), can be used to non-invasively detect non-steady state perturbations of gas kinetics and mirror tissue metabolism. Validation of monitoring instruments in patients is difficult because there is no standard reference measurement, a wide range of physiologic values is required, and steady state is difficult to achieve and confirm. We present the development, critical details, and validation of a practical bench setup of a metabolic lung simulator, to generate a wide range of accurate, adjustable, and stable reference values of V(CO2) and V(O2), for development, calibration, and validation of indirect calorimetry methodology and clinical monitors.MethodsWe utilized a metered alcohol combustion system, which allowed safe, precise, and adjustable delivery of ethanol to a specially designed wick system to stoichiometrically generate reference V(CO2) and V(O2). Gas was pumped through a circular circuit between the separate metabolic chamber and mechanical lung, to preserve basic features of mammalian gas kinetics, including a physiologic ventilation waveform and the ability to induce non-steady state changes. Accurate and precise generation of V(CO2) and V(O2) were validated against separate measurements of gas flow and gas fractions in a collection bag.ResultsFor volume control ventilation, average error for V(CO2) and V(O2) was -0.16% +/- 1.77 and 1.68% +/- 3.95, respectively. For pressure control ventilation, average error for V(CO2) and V(O2) was 0.90% +/- 2.48% and 4.86% +/- 2.21% respectively. Low values of measured ethanol vapor and carbon monoxide supported complete and pure combustion.ConclusionsThe comprehensive description details the solutions to many problems, to help future investigations of metabolic gas exchange and contribute to improved patient monitoring during anesthesia and critical care medicine.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.