• Cerebrovascular diseases · Jan 2008

    Inhibitory effects of eicosapentaenoic acid on chronic cerebral vasospasm after subarachnoid hemorrhage: possible involvement of a sphingosylphosphorylcholine-rho-kinase pathway.

    • Satoshi Shirao, Hirosuke Fujisawa, Akira Kudo, Tetsu Kurokawa, Hiroshi Yoneda, Ichiro Kunitsugu, Kuniaki Ogasawara, Masaaki Soma, Sei Kobayashi, Akira Ogawa, and Michiyasu Suzuki.
    • Department of Neurosurgery and Clinical Neuroscience, Yamaguchi University School of Medicine, Ube, Japan. shirao@yamaguchi-u.ac.jp
    • Cerebrovasc. Dis. 2008 Jan 1;26(1):30-7.

    Background And PurposeRho-kinase (ROK)-mediated Ca2+ sensitization of vascular smooth muscle (VSM) contraction plays a pivotal role in cerebral vasospasm (CV). We previously demonstrated that sphingosylphosphorylcholine (SPC) induces Ca2+ sensitization through sequential activation of the Src family protein tyrosine kinases (Src-PTKs) and ROK in vitro, and that Ca2+ sensitization is inhibited by eicosapentaenoic acid (EPA) through the selective inactivation of Src-PTK. In this study, we examined whether SPC induced CV in vivo, and, if it did, whether EPA would inhibit CV, as induced by SPC or in an in vivo model of subarachnoid hemorrhage (SAH).MethodsChanges in the diameter of the canine basilar artery were investigated by angiography after administering SPC into the cisterna magna. Then, Y27632, a specific Rho-kinase inhibitor, or EPA was injected intracisternally and the effects of both agents were investigated. In another experiment using a single-hemorrhage model, Y27632 or EPA was injected on day 7 after SAH and the changes in the diameter of the canine basilar artery were investigated.ResultsAt cerebrospinal fluid concentrations of 100 and 300 micromol/l, SPC induced severe vasoconstriction (maximum vasoconstriction by SPC (100 micromol/l): 61.8 +/- 8.2%), which was markedly reversed by Y27632 (96.3 +/- 4.4%) or EPA (92.6 +/- 12.8%). SAH caused severe vasospasm on day 7 (67.6 +/- 7.8%), which was significantly blocked by Y27632 (95.5 +/- 10.6%) or EPA (90.0 +/- 4.4%).ConclusionsSPC is a novel mediator of ROK-induced CV in vivo. The inhibition of CV induced by SPC or after SAH by EPA suggests beneficial roles of EPA in the treatment of CV. Our findings are compatible with the notion that the SPC-ROK pathway may be involved in CV.(c) 2008 S. Karger AG, Basel

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.