-
Plast. Reconstr. Surg. · Jan 2004
Investigation of TRAM flap oxygenation and perfusion by near-infrared reflection spectroscopy and color-coded duplex sonography.
- Oliver Scheufler, Klaus Exner, and Reimer Andresen.
- Department of Plastic, Reconstructive, and Hand Surgery, Markus Hospital, Johann Wolfgang Goethe University Frankfurt, Germany. oliver.scheufler@t-online.de
- Plast. Reconstr. Surg. 2004 Jan 1;113(1):141-52; discussion 153-5.
AbstractNear-infrared reflection spectroscopy, used experimentally for investigation of tissue hemoglobin content and oxygenation in various flaps, was tested in the pedicled transverse rectus abdominis musculocutaneous (TRAM) flap, chosen as a simple clinical model because of its well-known vascular anatomy and clinical relevance. The study intended to answer the following questions: Does the near-infrared reflection spectroscopy system used in this study measure tissue hemoglobin content and oxygenation in the superficial skin layers only, as proposed by the manufacturer? Is near-infrared reflection spectroscopy able to detect differences of tissue hemoglobin content and oxygenation in distinct zones of the TRAM flap skin before, early, and late after surgery? Does tissue hemoglobin content and oxygenation correspond to blood flow in the supplying superior epigastric artery and to clinical signs of TRAM flap perfusion and viability? In 11 patients, tissue hemoglobin content and oxygenation in the lower abdomen/TRAM flap, mastectomy skin flap, and contralateral breast were measured by a new near-infrared reflection spectroscopy system preoperatively, early postoperatively, and late postoperatively. Simultaneously, systolic peak flow in the ipsilateral superior epigastric artery was obtained by color-coded duplex sonography. Routine clinical monitoring was performed throughout the early postoperative period. Tissue hemoglobin content and oxygenation in the lower abdomen, mastectomy skin flap, and contralateral breast were similar before surgery but varied considerably between different patients. There were no significant differences among preoperative, early postoperative, and late postoperative values of tissue hemoglobin content and oxygenation in the mastectomy skin flap and contralateral breast. However, near-infrared reflection spectroscopy measurements of the TRAM flap revealed significant differences between preoperative and early postoperative values of tissue hemoglobin content and oxygenation and among zones I, II, and III early after surgery. Tissue hemoglobin content in the TRAM flap skin increased and oxygenation decreased early after surgery. Near-infrared reflection spectroscopy values corresponded to clinical signs of venous congestion predominantly in zone III. Late postoperative return of hemoglobin content and oxygenation in the TRAM flap toward preoperative values can be attributed to improved venous return by reversed flow across regurgitant valves and development of collateral circulation. Finally, there was a significant increase of systolic peak flow in the ipsilateral superior epigastric artery early after surgery. This could be related to the opening of small-caliber choke arteries between the superior and deep inferior epigastric arteries following ligation of the dominant deep inferior epigastric artery and TRAM flap transfer to the chest. Systolic peak flow returned to preoperative values late after surgery. The near-infrared reflection spectroscopy system used in this study appeared to measure hemoglobin content and oxygenation in the superficial skin layers only. Near-infrared reflection spectroscopy was able to detect differences of tissue hemoglobin content and oxygenation in the TRAM flap between preoperative and postoperative measurements and between distinct zones of the TRAM flap early postoperatively. Postoperative changes in near-infrared reflection spectroscopy values corresponded to clinical observations and blood flow in the superior epigastric artery measured by color-coded duplex sonography. Further experience is needed before near-infrared reflection spectroscopy can be advocated for routine clinical flap monitoring.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.