• Sports Med · Jan 2006

    Review

    The impact of exercise training intensity on change in physiological function in patients with chronic obstructive pulmonary disease.

    • Scott J Butcher and Richard L Jones.
    • Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
    • Sports Med. 2006 Jan 1;36(4):307-25.

    AbstractPulmonary rehabilitation incorporating exercise training is an effective method of enhancing physiological function and quality of life for patients with chronic obstructive pulmonary disease (COPD). Despite the traditional belief that exercise is primarily limited by the inability to adequately increase ventilation to meet increased metabolic demands in these patients, significant deficiencies in muscle function, oxygen delivery and cardiac function are observed that contribute to exercise limitation. Because of this multifactorial exercise limitation, defining appropriate exercise training intensities is difficult. The lack of a pure cardiovascular limitation to exercise prohibits the use of training guidelines that are based on cardiovascular factors such as oxygen consumption or heart rate. Current recommendations for exercise training intensity for patients with COPD include exercising at a 'maximally tolerable level', at an intensity corresponding with 50% of peak oxygen consumption (V-O2peak), or at 60-80% of peak power output obtained on a symptom-limited exercise tolerance test. In general, it appears that higher intensity training elicits greater physiological change than lower intensity training; however, there is no consensus as to the exercise training intensity that elicits the greatest physiological benefit while remaining tolerable to patients. The 'optimal' intensity of training likely depends upon the individual goals of each patient. If the goal is to increase the ability to sustain tasks that are currently able to be performed, lower to moderate-intensity training is likely to be sufficient. If the goal of training, however, is to increase the ability to perform tasks that are above the current level of tolerance, higher intensity training is likely to elicit greater performance increases. In order to perform higher intensity exercise, an interval training model is likely required. High-intensity interval training involves significant anaerobic energy utilisation and, therefore, may better mimic the physiological requirements of activities of daily living. Also, high-intensity interval training is tolerable to patients and may, in fact, reduce the degree of dyspnoea and dynamic hyperinflation through a reduced ventilatory demand. Another factor that will determine the optimal intensity of training is the relative contribution of ventilatory limitation to exercise tolerance. If peak exercise tolerance is limited by a patient's ability to increase ventilation, it is possible that interval training at an intensity higher than peak will elicit greater muscular adaptation than an intensity at or below peak power on an incremental exercise test. More research is required to determine the optimal training intensity for pulmonary rehabilitation patients.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.