• J. Appl. Physiol. · Oct 2010

    Dynamics of tidal volume and ventilation heterogeneity under pressure-controlled ventilation during bronchoconstriction: a simulation study.

    • Chanikarn Wongviriyawong, Tilo Winkler, R Scott Harris, and Jose G Venegas.
    • Massachusetts General Hospital, Harvard Medical School, Department of Anesthesia and Critical Care, Boston, Massachusetts 02114, USA. minto@mit.edu
    • J. Appl. Physiol. 2010 Oct 1;109(4):1211-8.

    AbstractThe difference in effectiveness between volume-controlled ventilation (VCV) and pressure-controlled ventilation (PCV) on mechanically ventilated patients during bronchoconstriction is not totally clear. PCV is thought to deliver a more uniform distribution of ventilation than VCV, but the delivered tidal volume could be unstable and affected by changes in the degree of constriction. To explore the magnitude of these effects, we ran numerical simulations with both modes of ventilation in a network model of the lung in which we incorporated not only the pressure and flow dynamics along the airways but also the effect of cycling pressures and tissue tethering forces during breathing on the dynamic equilibrium of the airway smooth muscle (ASM) (Venegas et al., Nature 434: 777-782). These simulations provided an illustration of changes in airway radii, the total delivered tidal volume stability, and distribution of ventilation following a transition from VCV to PCV and during progressively increasing ASM activation level. These simulations yielded three major results. First, the ventilation heterogeneity and patchiness in ventilation during steady-state VCV were substantially reduced after the transition to PCV. Second, airway radius, tidal volume, and the distribution of ventilation under severe bronchoconstriction were highly sensitive to the setting of inspiratory pressure selected for PCV and to the degree of activation of the ASM. Third, the dynamic equilibrium of active ASM exposed to cycling forces is the major contributor to these effects. These insights may provide a theoretical framework to guide the selection of ventilation mode, the adjustment of ventilator settings, and the interpretation of clinical observations in mechanically ventilated asthmatic patients.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.