• Am. J. Respir. Crit. Care Med. · Nov 1996

    Comparative Study

    Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator.

    • G R Lefevre, S E Kowalski, L G Girling, D B Thiessen, and W A Mutch.
    • Department of Anaesthesia and Neuroanesthesia Research Laboratory, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
    • Am. J. Respir. Crit. Care Med. 1996 Nov 1;154(5):1567-72.

    AbstractWe compared computer-controlled mechanical ventilation programmed for biologic variability of respiratory rate (RR) and tidal volume (VT) with conventional intermittent positive-pressure ventilation (IPPV) in an oleic acid (OA) lung injury model. Seventeen pigs were ventilated with an Ohio 7000 anesthesia ventilator. Minute ventilation (VE) was adjusted to maintain PaCO2 at 30 to 35 mm Hg at baseline and was not altered further. OA was infused at 0.2 ml/kg/h until PaO2 decreased to < 125 mm Hg (F(I)O2 = 0.5). Animals were randomly assigned to continue with conventional IPPV (control group; n = 8) or had IPPV computer-controlled (computer group; n = 9). Hemodynamic, respiratory gas, airway pressure, and volume data were obtained at baseline (before OA infusion), at Time 30 (after infusion), and at 30-min intervals for 240 min after OA. At experiment completion, the lungs were removed to determine the wet:dry weight ratios. The control group had RR fixed at 20 breaths/min. The computer group had a RR of 20 +/- 2.3 breaths/min (range, 15 to 27 breaths/min), comprising 369 different RR values with reciprocal changes in VT over 1,089 s before the program looped to repeat itself. There was no difference between groups in the volume of OA infused. By 120 min after lung injury, animals in the computer group had significantly greater PaO2, associated with a lower Qs/QT. Mean airway pressures and mean peak airway pressures were not different in the two groups. By 180 min, respiratory system compliance (Crs) was significantly lower in the control group. The wet:dry lung weight ratios were greater in the control group. Thus, in a porcine model of OA lung injury, computer-controlled mechanical ventilation, which is programmed for biologic variability, resulted in improved blood oxygenation without increasing mean airway pressures when compared with conventional IPPV.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…