-
J. Neuropathol. Exp. Neurol. · Aug 2011
Prominent microglial activation in the early proinflammatory immune response in naturally occurring canine spinal cord injury.
- Ingo Spitzbarth, Patricia Bock, Verena Haist, Veronika Maria Stein, Andrea Tipold, Konstantin Wewetzer, Wolfgang Baumgärtner, and Andreas Beineke.
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany.
- J. Neuropathol. Exp. Neurol. 2011 Aug 1;70(8):703-14.
AbstractBetter understanding of the pathogenesis of spinal cord injury (SCI) is needed for the development of new therapeutic strategies. Spinal cord injury has been investigated in various rodent models, but extrapolation to humans requires the use of a large animal model that more closely mimics human SCI. Dogs frequently develop spontaneous SCI with features that bear a striking resemblance to the human counterpart. We investigated the temporal course of the immune response during naturally occurring canine SCI and in organotypic canine spinal cord slice cultures that are devoid of peripheral immune cells. By immunohistochemistry, the inflammatory response in subacute canine SCI was largely restricted to resident immune cells as demonstrated by activation of major histocompatibility complex class II-expressing microglia/macrophages. By quantitative polymerase chain reaction, there was parallel upregulation of proinflammatory cytokine gene expression (i.e. of interleukin 6 [IL-6] and IL-8 with a trend toward upregulation of tumor necrosis factor) in acute canine SCI. Expression of neuroprotective cytokines (e.g. IL-10) remained unchanged, and transforming growth factor β upregulation was delayed. In organotypic spinal cord slices, there was similar activation of major histocompatibility complex class II-positive microglia and prolonged upregulation of inflammatory cytokines, indicating that resident rather than infiltrating cells play major roles in the postinjury immune response. Thus, canine SCI represents a bridge between rodent models and human SCI that may be relevant for clinical and preclinical treatment studies.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.