-
- Ronald D Berger, James Palazzolo, and Henry Halperin.
- Department of Medicine, The Johns Hopkins University School of Medicine, 600N. Wolfe Street/Carnegie 592, Baltimore, MD 21287-0409, USA. rberger@jhmi.edu
- Resuscitation. 2007 Oct 1;75(1):145-52.
BackgroundDue to motion artifact in the ECG caused by chest compressions automatic external defibrillators (AEDs) have difficulty recognizing ventricular fibrillation (VF) during cardiopulmonary resuscitation (CPR). Frequent interruption of CPR is required for artifact-free ECG interpretation, but these interruptions reduce the efficacy of CPR. We developed a motion artifact reduction system (MARS), based on adaptive noise cancellation techniques, for use during CPR. We hypothesized that this system would allow for automated rhythm discrimination during uninterrupted CPR.Methods And ResultsThirteen swine underwent CPR during normal sinus rhythm (NSR) and repeated inductions of VF and asystole, using an automated device that uses a load-distributing band to compress the anterior chest. A single ECG lead and the instantaneous compression force signal were sampled during continuous CPR and fed to MARS, which in turn provided a filtered ECG signal in which artifacts that correlated with compression force were suppressed. The filtered and unfiltered ECGs were then fed simultaneously, and in real time, to three pairs of defibrillators with rhythm discrimination functions. During CPR, non-shockable rhythms were correctly classified by the defibrillators in 59 of 63 instances using the raw ECG, and 60 of 63 instances using the MARS-filtered ECG (p=N.S.). During CPR, VF was correctly classified in 35 of 222 attempts using the raw ECG, and in 310 of 318 cases using the MARS-filtered ECG (p<0.001). As control, when CPR was not applied, all rhythms were correctly identified by each defibrillator using either the raw ECG or the filtered ECG.ConclusionsMotion artifact reduction by adaptive noise cancellation allows for recognition of VF during uninterrupted automated CPR, while this is rarely possible based on the raw ECG. Incorporation of this signal processing strategy may obviate the need for interruptions in chest compression and thus enhance CPR efficacy.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.