-
- Chandramouli Krishnan, Rajiv Ranganathan, Shailesh S Kantak, Yasin Y Dhaher, and William Z Rymer.
- Department of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI, USA; Sensory Motor Performance Program, Rehabilitation Institute of Chicago, IL, USA; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. Electronic address: mouli@umich.edu.
- Brain Stimul. 2014 May 1;7(3):443-50.
BackgroundTranscranial direct current stimulation (tDCS) is known to reliably alter motor cortical excitability in a polarity dependent fashion such that anodal stimulation increases cortical excitability and cathodal stimulation inhibits cortical excitability. However, the effect of tDCS on agonist and antagonist volitional muscle activation is currently not known.ObjectiveThis study investigated the effect of motor cortical anodal tDCS on EMG/force relationships of biceps brachii (agonist) and triceps brachii (antagonist) using surface electromyography (EMG).MethodsEighteen neurologically intact adults (9 tDCS and 9 controls) participated in this study. EMG/force relationships were established by having subjects perform submaximal isometric contractions at several force levels (12.5%, 25%, 37.5%, and 50% of maximum).ResultsResults showed that anodal tDCS significantly affected the EMG/force relationship of the biceps brachii muscle. Specifically, anodal tDCS increased the magnitude of biceps brachii activation at 37.5% and 50% of maximum. Anodal tDCS also resulted in an increase in the peak force and EMG values during maximal contractions as compared to the control condition. EMG analyses of other elbow muscles indicated that the increase in biceps brachii activation after anodal tDCS was not related to alterations in synergistic or antagonistic muscle activity.ConclusionsOur results indicate that anodal tDCS significantly affects the voluntary EMG/force relationship of the agonist muscles without altering the coactivation of the antagonistic muscles. The most likely explanation for the observed greater EMG per unit force after anodal tDCS appears to be related to alterations in motor unit recruitment strategies.Copyright © 2014 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.