• J. Mol. Cell. Cardiol. · Jul 2008

    Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts--role of late sodium current and intracellular ion accumulation.

    • Samuel Sossalla, Stefan Wagner, Eva C L Rasenack, Hanna Ruff, Sarah L Weber, Friedrich A Schöndube, Theodor Tirilomis, Gero Tenderich, Gerd Hasenfuss, Luiz Belardinelli, and Lars S Maier.
    • Heart Center, Georg-August-University Göttingen, Germany.
    • J. Mol. Cell. Cardiol. 2008 Jul 1;45(1):32-43.

    AbstractThe goal of this study was to test the hypothesis that the novel anti-ischemic drug ranolazine, which is known to inhibit late I(Na), could reduce intracellular [Na(+)](i) and diastolic [Ca(2+)](i) overload and improve diastolic function. Contractile dysfunction in human heart failure (HF) is associated with increased [Na(+)](i) and elevated diastolic [Ca(2+)](i). Increased Na(+) influx through voltage-gated Na(+) channels (late I(Na)) has been suggested to contribute to elevated [Na(+)](i) in HF. In isometrically contracting ventricular muscle strips from end-stage failing human hearts, ranolazine (10 micromol/L) did not exert negative inotropic effects on twitch force amplitude. However, ranolazine significantly reduced frequency-dependent increase in diastolic tension (i.e., diastolic dysfunction) by approximately 30% without significantly affecting sarcoplasmic reticulum (SR) Ca(2+) loading. To investigate the mechanism of action of this beneficial effect of ranolazine on diastolic tension, Anemonia sulcata toxin II (ATX-II, 40 nmol/L) was used to increase intracellular Na(+) loading in ventricular rabbit myocytes. ATX-II caused a significant rise in [Na(+)](i) typically seen in heart failure via increased late I(Na). In parallel, ATX-II significantly increased diastolic [Ca(2+)](i). In the presence of ranolazine the increases in late I(Na), as well as [Na(+)](i) and diastolic [Ca(2+)](i) were significantly blunted at all stimulation rates without significantly decreasing Ca(2+) transient amplitudes or SR Ca(2+) content. In summary, ranolazine reduced the frequency-dependent increase in diastolic tension without having negative inotropic effects on contractility of muscles from end-stage failing human hearts. Moreover, in rabbit myocytes the increases in late I(Na), [Na(+)](i) and [Ca(2+)](i) caused by ATX-II, were significantly blunted by ranolazine. These results suggest that ranolazine may be of therapeutic benefit in conditions of diastolic dysfunction due to elevated [Na(+)](i) and diastolic [Ca(2+)](i).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…