-
J. Mol. Cell. Cardiol. · Jul 2008
Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts--role of late sodium current and intracellular ion accumulation.
- Samuel Sossalla, Stefan Wagner, Eva C L Rasenack, Hanna Ruff, Sarah L Weber, Friedrich A Schöndube, Theodor Tirilomis, Gero Tenderich, Gerd Hasenfuss, Luiz Belardinelli, and Lars S Maier.
- Heart Center, Georg-August-University Göttingen, Germany.
- J. Mol. Cell. Cardiol. 2008 Jul 1;45(1):32-43.
AbstractThe goal of this study was to test the hypothesis that the novel anti-ischemic drug ranolazine, which is known to inhibit late I(Na), could reduce intracellular [Na(+)](i) and diastolic [Ca(2+)](i) overload and improve diastolic function. Contractile dysfunction in human heart failure (HF) is associated with increased [Na(+)](i) and elevated diastolic [Ca(2+)](i). Increased Na(+) influx through voltage-gated Na(+) channels (late I(Na)) has been suggested to contribute to elevated [Na(+)](i) in HF. In isometrically contracting ventricular muscle strips from end-stage failing human hearts, ranolazine (10 micromol/L) did not exert negative inotropic effects on twitch force amplitude. However, ranolazine significantly reduced frequency-dependent increase in diastolic tension (i.e., diastolic dysfunction) by approximately 30% without significantly affecting sarcoplasmic reticulum (SR) Ca(2+) loading. To investigate the mechanism of action of this beneficial effect of ranolazine on diastolic tension, Anemonia sulcata toxin II (ATX-II, 40 nmol/L) was used to increase intracellular Na(+) loading in ventricular rabbit myocytes. ATX-II caused a significant rise in [Na(+)](i) typically seen in heart failure via increased late I(Na). In parallel, ATX-II significantly increased diastolic [Ca(2+)](i). In the presence of ranolazine the increases in late I(Na), as well as [Na(+)](i) and diastolic [Ca(2+)](i) were significantly blunted at all stimulation rates without significantly decreasing Ca(2+) transient amplitudes or SR Ca(2+) content. In summary, ranolazine reduced the frequency-dependent increase in diastolic tension without having negative inotropic effects on contractility of muscles from end-stage failing human hearts. Moreover, in rabbit myocytes the increases in late I(Na), [Na(+)](i) and [Ca(2+)](i) caused by ATX-II, were significantly blunted by ranolazine. These results suggest that ranolazine may be of therapeutic benefit in conditions of diastolic dysfunction due to elevated [Na(+)](i) and diastolic [Ca(2+)](i).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.