• Journal of hypertension · Nov 2014

    Review Meta Analysis

    Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis.

    • Ruijuan Liang, Biao Zhang, Xiaoyi Zhao, Yanping Ruan, Hui Lian, and Zhongjie Fan.
    • aDepartment of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing bDepartment of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, China.
    • J. Hypertens. 2014 Nov 1; 32 (11): 2130-40; discussion 2141.

    BackgroundComprehensive studies have confirmed that particulate matter air pollution could trigger myocardial infarction, heart failure and reduce heart rate variability; however, its effect on blood pressure (BP) remains controversial. Therefore, we did a systematic review and meta-analysis to investigate the association and its magnitude between exposure to PM2.5 and BP.MethodsThe databases of PubMed, Ovid Medline and Embase between 1948 and 15 November 2013 were searched to identify the studies exploring the association between particulate matters (diameter <2.5 μm) (PM2.5) and BP. Selection was performed by screening abstracts and titles and then reviewing the full text of potentially eligible studies. We extracted descriptive and quantitative information from each study and used a random-effects model to calculate BP change and 95% confidence interval (95% CI) for each increment of 10 μg/m in PM2.5. Meta-regression and subgroup analyses were conducted to explore the source of heterogeneity and the impact of possible confounding factors.ResultsOf 1028 identified articles, after screening and reviewing in detail, 22 studies were included in our meta-analysis. The overall analysis suggested that BP was positively related to PM2.5 exposure with an elevation of 1.393 mmHg, 95% CI (0.874-1.912) and 0.895 mmHg, 95% CI (0.49-1.299) per 10 μg/m increase for SBP and DBP, respectively. Long-term exposure showed the strongest associations with BP. And for short-term effect, the largest magnitude was seen at the lag of the previous 5 days average prior to BP measurement. Subgroup analyses yielded consistent results with the overall analyses. Meta-regression of SBP did not identify any significant potential causes of heterogeneity. For DBP, study design, the method of BP monitoring, publication year, study design, study period and sample size were significant modifiers of the relationship between DBP and PM2.5.ConclusionExposure to PM2.5 had a statistically significant impact on BP and the magnitude of this effect may have substantially clinical implication.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.