• Anesthesiology · Sep 2007

    Clinical Trial

    Differential contribution of sodium channel subtypes to action potential generation in unmyelinated human C-type nerve fibers.

    • Philip M Lang, Verena B Hilmer, and Peter Grafe.
    • Department of Anesthesiology, University of Munich, Munich, Germany. Philip.Lang@med.uni-muenchen.de
    • Anesthesiology. 2007 Sep 1;107(3):495-501.

    BackgroundMultiple voltage-dependent sodium channels (Na(v)) contribute to action potentials and excitability of primary nociceptive neurons. The aim of the current study was to characterize subtypes of Na(v) that contribute to action potential generation in peripheral unmyelinated human C-type nerve fibers.MethodsRegistration of C-fiber compound action potentials and determination of membrane threshold was performed by a computerized threshold tracking program. Nerve fibers were stimulated with a 1-ms current pulse either alone or after a small ramp current lasting 300 ms.ResultsCompound C-fiber action potentials elicited by supramaximal 1-ms current pulses were rather resistant to application of tetrodotoxin (30-90 nM). However, the same concentrations of tetrodotoxin strongly reduced the peak height and elevated membrane threshold of action potentials evoked at the end of a 300-ms current ramp. A similar effect was observed during application of lidocaine and mexiletine (50 microM each).ConclusionsThese data indicate that more than one type of Na(v) contributes to the generation of action potentials in unmyelinated human C-type nerve fibers. The peak height of an action potential produced by a short electrical impulse is dependent on the activation of tetrodotoxin-resistant ion channels. In contrast, membrane threshold and action potential peak height at the end of a slow membrane depolarization are regulated by a subtype of Na(v) with high sensitivity to low concentrations of tetrodotoxin, lidocaine, and mexiletine. The electrophysiologic and pharmacologic characteristics may indicate the functional activity of the Na(v) 1.7 subtype of voltage-dependent sodium channels.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.