• JAMA surgery · Apr 2015

    Development and validation of 4 different rat models of uncontrolled hemorrhage.

    • Courtney E Morgan, Vivek S Prakash, Janet M Vercammen, Timothy Pritts, and Melina R Kibbe.
    • Division of Vascular Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
    • JAMA Surg. 2015 Apr 1;150(4):316-24.

    ImportanceHemorrhage is the leading cause of death in military trauma and second leading cause of death in civilian trauma. Although many well-established animal models of hemorrhage exist in the trauma and anticoagulant literature, few focus on directly quantitating blood loss.ObjectiveTo establish and validate a reproducible rodent model of uncontrolled hemorrhage to serve as the foundation for developing therapies for noncompressible torso trauma.Design, Settings, And SubjectsWe developed and evaluated 4 different hemorrhage models using male Sprague-Dawley rats (6 rats/model), aged 10 to 14 weeks and weighing 330 to 460 g, at the Department of Surgery, Northwestern University.InterventionsWe used tail-cut (4 cm), liver punch biopsy (12 mm), liver laceration (3.0 × 1.5 cm), and spleen transection models. All animals underwent invasive hemodynamic monitoring.Main Outcomes And MeasuresBlood loss, expressed as a percentage of total blood volume (TBV), mean arterial pressure, and heart rate, which were recorded at 2- to 5-minute intervals.ResultsThe tail-cut model resulted in a mean (SD) TBV loss of 15.4% (6.0%) with hemodynamics consistent with class I hemorrhagic shock. The liver punch biopsy model resulted in a mean (SD) TBV loss of 16.7% (3.3%) with hemodynamics consistent with class I hemorrhagic shock. The liver laceration model resulted in a mean (SD) TBV loss of 19.8% (3.0%) with hemodynamics consistent with class II hemorrhagic shock. The spleen transection model resulted in the greatest blood loss (P < .01), with a mean (SD) TBV loss of 27.9% (3.4%) and hemodynamics consistent with class II hemorrhagic shock. The liver laceration and punch biopsy models resulted in most of the blood loss within the first 2 minutes, whereas the spleen transection and tail-cut models resulted in a steady loss during 10 minutes. The liver laceration and spleen transection models resulted in the greatest degree of hemodynamic instability (mean [SD] arterial pressure decreases of 25 [1] and 41 [11] mm Hg, respectively). One-hour survival was 100% in all 4 models.Conclusions And RelevanceWe established and validated the reproducibility of 4 different rat models of uncontrolled hemorrhage. These models provide a foundation to design novel nonsurgical therapies to control hemorrhage, and the different degrees of hemorrhagic shock produced from these models allow for flexibility in experimental design.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.