• J Spinal Disord Tech · May 2016

    PEEK Versus Ti Interbody Fusion Devices: Resultant Fusion, Bone Apposition, Initial and 26 Week Biomechanics.

    • Matthew Henry Pelletier, Nicholas Cordaro, Vaibhav M Punjabi, Matthew Waites, Abe Lau, and William R Walsh.
    • *Surgical & Orthopaedic Research Laboratories Level 1, Prince of Wales Hospital, Randwick, Sydney, NSW, Australia†SeaSpine Inc., Vista, CA.
    • J Spinal Disord Tech. 2016 May 1; 29 (4): E208-14.

    Study DesignComparative evaluation of in vitro and in vivo biomechanics, resulting fusion and histomorphometric aspects of polyetheretherketone (PEEK) versus titanium (Ti) interbody fusion devices in an animal model with similar volumes of bone graft.ObjectiveIdentify differences in the characteristics of fusion and biomechanics immediately following implantation (time 0) and at 26 weeks with each interbody implant.Summary Of Background DataPEEK has been well accepted in spinal surgery, it provides a closer match to the mechanical properties of bone than metallic implants such as Ti. This is thought to reduce graft stress shielding and subsidence of interbody fusion devices. There remains controversy as to the overall influence of this as a factor influencing resultant fusion and initial stability. Although material modulus is 1 factor of importance, other design factors are likely to play a large role determining overall performance of an interbody implant.MethodsA Ti and PEEK device of similar size with a central void to accommodate graft material were compared. The PEEK device had a ridged surface on the caudal and cephalad surfaces, whereas Ti device allowed axial compliance and had bone ingrowth endplates and polished internal surfaces. A 2-level ALIF was performed in 9 sheep and fusion, biomechanics, and bone apposition were evaluated at 26 weeks. Time 0 in vitro biomechanical tests were performed to establish initial stability immediately after implantation.ResultsNo differences were detected in the biomechanical measures of each of the devices in in vitro time 0 tests. All levels were fused by 26 weeks with considerably lower range of motion when compared with in vitro tests. Range of motion in all modes of bending was reduced by over 70% when compared with intact values for axial rotation (Ti-74%, PEEK-71%), lateral bending (Ti-90%, PEEK-88%), and flexion/extension (Ti-92%, PEEK-91%). Mechanical properties of fusions formed with each implant did not differ; however, bone apposition was variable with polished internal Ti surfaces being lower than PEEK and treated Ti endplates showing the greatest levels. Graft material displayed axial trabecular alignment with both implants.ConclusionsAlthough material properties and surface characteristics resulted in differing amounts of biological integration from the host, both implants were capable of producing excellent fusion results using similar volumes of bone graft.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…