-
- Chandan G Reddy, Kimberly K Amrami, Benjamin M Howe, and Robert J Spinner.
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa; and.
- Neurosurg Focus. 2015 Sep 1; 39 (3): E8.
AbstractOBJECT Knee dislocations are often accompanied by stretch injuries to the common peroneal nerve (CPN). A small subset of these injuries also affect the tibial nerve. The mechanism of this combined pattern could be a single longitudinal stretch injury of the CPN extending to the sciatic bifurcation (and tibial division) or separate injuries of both the CPN and tibial nerve, either at the level of the tibiofemoral joint or distally at the soleal sling and fibular neck. The authors reviewed cases involving patients with knee dislocations with CPN and tibial nerve injuries to determine the localization of the combined injury and correlation between degree of MRI appearance and clinical severity of nerve injury. METHODS Three groups of cases were reviewed. Group 1 consisted of knee dislocations with clinical evidence of nerve injury (n = 28, including 19 cases of complete CPN injury); Group 2 consisted of knee dislocations without clinical evidence of nerve injury (n = 19); and Group 3 consisted of cases of minor knee trauma but without knee dislocation (n = 14). All patients had an MRI study of the knee performed within 3 months of injury. MRI appearance of tibial and common peroneal nerve injury was scored by 2 independent radiologists in 3 zones (Zone I, sciatic bifurcation; Zone II, knee joint; and Zone III, soleal sling and fibular neck) on a severity scale of 1-4. Injury signal was scored as diffuse or focal for each nerve in each of the 3 zones. A clinical score was also calculated based on Medical Research Council scores for strength in the tibial and peroneal nerve distributions, combined with electrophysiological data, when available, and correlated with the MRI injury score. RESULTS Nearly all of the nerve segments visualized in Groups 1 and 2 demonstrated some degree of injury on MRI (95%), compared with 12% of nerve segments in Group 3. MRI nerve injury scores were significantly more severe in Group 1 relative to Group 2 (2.06 vs 1.24, p < 0.001) and Group 2 relative to Group 3 (1.24 vs 0.13, p < 0.001). In both groups of patients with knee dislocations (Groups 1 and 2), the MRI nerve injury score was significantly higher for CPN than tibial nerve (2.72 vs 1.40 for Group 1, p < 0.001; 1.39 vs 1.09 for Group 2, p < 0.05). The clinical injury score had a significantly strong correlation with the MRI injury score for the CPN (r = 0.75, p < 0.001), but not for the tibial nerve (r = 0.07, p = 0.83). CONCLUSIONS MRI is highly sensitive in detecting subclinical nerve injury. In knee dislocation, clinical tibial nerve injury is always associated with simultaneous CPN injury, but tibial nerve function is never worse than peroneal nerve function. The point of maximum injury can occur in any of 3 zones.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.