-
Neurobiology of disease · Mar 2013
AT2-receptor stimulation enhances axonal plasticity after spinal cord injury by upregulating BDNF expression.
- Pawel Namsolleck, Francesco Boato, Katja Schwengel, Ludovit Paulis, Katherine S Matho, Nathalie Geurts, Christa Thöne-Reineke, Kristin Lucht, Kerstin Seidel, Anders Hallberg, Björn Dahlöf, Thomas Unger, Sven Hendrix, and U Muscha Steckelings.
- Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany.
- Neurobiol. Dis. 2013 Mar 1;51:177-91.
AbstractIt is widely accepted that the angiotensin AT2-receptor (AT2R) has neuroprotective features. In the present study we tested pharmacological AT2R-stimulation as a therapeutic approach in a model of spinal cord compression injury (SCI) in mice using the novel non-peptide AT2R-agonist, Compound 21 (C21). Complementary experiments in primary neurons and organotypic cultures served to identify underlying mechanisms. Functional recovery and plasticity of corticospinal tract (CST) fibers following SCI were monitored after application of C21 (0.3mg/kg/dayi.p.) or vehicle for 4 weeks. Organotypic co-culture of GFP-positive entorhinal cortices with hippocampal target tissue served to evaluate the impact of C21 on reinnervation. Neuronal differentiation, apoptosis and expression of neurotrophins were investigated in primary murine astrocytes and neuronal cells. C21 significantly improved functional recovery after SCI compared to controls, and this significantly correlated with the increased number of CST fibers caudal to the lesion site. In vitro, C21 significantly promoted reinnervation in organotypic brain slice co-cultures (+50%) and neurite outgrowth of primary neurons (+25%). C21-induced neurite outgrowth was absent in neurons derived from AT2R-KO mice. In primary neurons, treatment with C21 further induced RNA expression of anti-apoptotic Bcl-2 (+75.7%), brain-derived neurotrophic factor (BDNF) (+53.7%), the neurotrophin receptors TrkA (+57.4%) and TrkB (+67.9%) and a marker for neurite growth, GAP43 (+103%), but not TrkC. Our data suggest that selective AT2R-stimulation improves functional recovery in experimental spinal cord injury through promotion of axonal plasticity and through neuroprotective and anti-apoptotic mechanisms. Thus, AT2R-stimulation may be considered for the development of a novel therapeutic approach for the treatment of spinal cord injury.Copyright © 2012 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.