• Psychopharmacology · Jun 2005

    Review

    Effector antagonism by the regulators of G protein signalling (RGS) proteins causes desensitization of mu-opioid receptors in the CNS.

    • Javier Garzón, María Rodríguez-Muñoz, Elena de la Torre-Madrid, and Pilar Sánchez-Blázquez.
    • Neurofarmacología, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Doctor Arce, 37, 28002, Madrid, Spain. jgarzon@cajal.csic.es
    • Psychopharmacology (Berl.). 2005 Jun 1;180(1):1-11.

    RationaleIn cell culture systems, agonists can promote the phosphorylation and internalization of receptors coupled to G proteins (GPCR), leading to their desensitization. However, in the CNS opioid agonists promote a profound desensitization of their analgesic effects without diminishing the presence of their receptors in the neuronal membrane. Recent studies have indicated that CNS proteins of the RGS family, specific regulators of G protein signalling, may be involved in mu-opioid receptor desensitization in vivo.ObjectiveIn this work we review the role played by RGS proteins in the intensity and duration of the effects of mu-opioid receptor agonists, and how they influence the delayed tolerance that develops in response to specific doses of opioids.ResultsRGS proteins are GTPase-activating proteins (GAP) that accelerate the hydrolysis of GalphaGTP to terminate signalling at effectors. The GAP activity of RGS-R4 and RGS-Rz proteins restricts the amplitude of opioid analgesia, and the efficient deactivation of GalphazGTP subunits by RGS-Rz proteins prevents mu receptor desensitization. However, RGS-R7 proteins antagonize effectors by binding to and sequestering mu receptor-activated Galphai/o/z subunits. Thus, they reduce the pool of receptor-regulated G proteins and hence, the effects of agonists. The delayed tolerance observed following morphine administration correlates with the transfer of Galpha subunits from mu receptors to RGS-R7 proteins and the subsequent stabilization of this association.ConclusionIn the CNS, the RGS proteins control the activity of mu opioid receptors through GAP-dependent (RGS-R4 and RGS-Rz) as well as by GAP-independent mechanisms (RGS-R7). As a result, they can both antagonize effectors and desensitize receptors under certain circumstances.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.