-
Journal of neurotrauma · Sep 2016
Relating Histopathology and Mechanical Strain in Experimental Contusion Spinal Cord Injury in a Rat Model.
- Tim Bhatnagar, Jie Liu, Andrew Yung, Peter Cripton, Piotr Kozlowski, Wolfram Tetzlaff, and Thomas Oxland.
- 1 International Collaboration On Repair Discoveries (ICORD), University of British Columbia, Vancouver , British Columbia, Canada .
- J. Neurotrauma. 2016 Sep 15; 33 (18): 1685-95.
AbstractDuring traumatic spinal cord injury (SCI), the spinal cord is subject to external displacements that result in damage of neural tissues. These displacements produce complex internal deformations, or strains, of the spinal cord parenchyma. The aim of this study is to determine a relationship between these internal strains during SCI and primary damage to spinal cord gray matter (GM) in an in vivo rat contusion model. Using magnetic resonance imaging and novel image registration methods, we measured three-dimensional (3D) mechanical strain in in vivo rat cervical spinal cord (n = 12) during an imposed contusion injury. We then assessed expression of the neuronal transcription factor, neuronal nuclei (NeuN), in ventral horns of GM (at the epicenter of injury as well as at intervals cranially and caudally), immediately post-injury. We found that minimum principal strain was most strongly correlated with loss of NeuN stain across all animals (R(2) = 0.19), but varied in strength between individual animals (R(2) = 0.06-0.52). Craniocaudal distribution of anatomical damage was similar to measured strain distribution. A Monte Carlo simulation was used to assess strain field error, and minimum principal strain (which ranged from 8% to 36% in GM ventral horns) exhibited a standard deviation of 2.6% attributed to the simulated error. This study is the first to measure 3D deformation of the spinal cord and relate it to patterns of ensuing tissue damage in an in vivo model. It provides a platform on which to build future studies addressing the tolerance of spinal cord tissue to mechanical deformation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.