• Int. Immunopharmacol. · Feb 2006

    beta-glucan protects against burn-induced oxidative organ damage in rats.

    • Hale Z Toklu, Göksel Sener, Nermina Jahovic, Bahar Uslu, Serap Arbak, and Berrak C Yeğen.
    • Marmara University, School of Pharmacy, Department of Pharmacology, Haydarpaşa, Istanbul 34668, Turkey.
    • Int. Immunopharmacol. 2006 Feb 1;6(2):156-69.

    AbstractThermal injury may lead to systemic inflammatory response, and multiple organ failure. Generation of reactive oxygen radicals and lipid peroxidation play important roles in burn-induced remote organ injury. In the present study, we investigated the putative protective effect of local or systemic beta-glucan treatment on burn-induced remote organ injury. Wistar albino rats were exposed to 90 degrees C bath for 10 s to induce thermal trauma. beta-glucan (3.75 mg/rat locally or 50 mg/kg orally) or saline was administered immediately after the trauma and were repeated twice daily in 48 h groups. Rats were decapitated either 6 or 48 h after burn injury and the skin, lung, liver, ileum and kidney tissues were taken for the measurement of malondialdehyde (MDA)--an index of lipid peroxidation--and glutathione (GSH)--a key antioxidant--levels. Neutrophil infiltration was evaluated by the measurement of tissue myeloperoxidase (MPO) activity, while the tumor necrosis factor-alpha (TNF-alpha) levels were measured in serum samples. Skin tissues were also examined microscopically. Severe skin scald injury (30% of total body surface area) caused significant decreases in GSH levels of the liver and intestinal tissues (p<0.01-<0.001), while MDA levels were significantly (p<0.01-p<0.001) increased at post-burn 6 and 48 h. Both local and systemic beta-glucan treatments significantly reversed (p<0.01-p<0.001) the elevations in MDA levels, while reduced GSH levels were reversed back to control levels (p<0.01-p<0.001); and the raised MPO levels were significantly decreased (p<0.05-p<0.001). The results indicate that both systemic and local administration of beta-glucan were effective against burn-induced oxidative tissue damage in the rat. beta-glucans, besides their immunomodulatory effects, have additional antioxidant properties. Therefore, beta-glucans merit consideration as therapeutic agents in the treatment of burn injuries.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.