• Nature medicine · Jun 2006

    Synaptic scaffolding protein Homer1a protects against chronic inflammatory pain.

    • Anke Tappe, Matthias Klugmann, Ceng Luo, David Hirlinger, Nitin Agarwal, Justus Benrath, Markus U Ehrengruber, Matthew J During, and Rohini Kuner.
    • Pharmacology Institute, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
    • Nat. Med. 2006 Jun 1;12(6):677-81.

    AbstractGlutamatergic signaling and intracellular calcium mobilization in the spinal cord are crucial for the development of nociceptive plasticity, which is associated with chronic pathological pain. Long-form Homer proteins anchor glutamatergic receptors to sources of calcium influx and release at synapses, which is antagonized by the short, activity-dependent splice variant Homer1a. We show here that Homer1a operates in a negative feedback loop to regulate the excitability of the pain pathway in an activity-dependent manner. Homer1a is rapidly and selectively upregulated in spinal cord neurons after peripheral inflammation in an NMDA receptor-dependent manner. Homer1a strongly attenuates calcium mobilization as well as MAP kinase activation induced by glutamate receptors and reduces synaptic contacts on spinal cord neurons that process pain inputs. Preventing activity-induced upregulation of Homer1a using shRNAs in mice in vivo exacerbates inflammatory pain. Thus, activity-dependent uncoupling of glutamate receptors from intracellular signaling mediators is a novel, endogenous physiological mechanism for counteracting sensitization at the first, crucial synapse in the pain pathway. Furthermore, we observed that targeted gene transfer of Homer1a to specific spinal segments in vivo reduces inflammatory hyperalgesia. Thus, Homer1 function is crucially involved in pain plasticity and constitutes a promising therapeutic target for the treatment of chronic inflammatory pain.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.