• Anesthesia and analgesia · May 2013

    The impact of hypothermia on emergence from isoflurane anesthesia in orexin neuron-ablated mice.

    • Chiharu Kuroki, Yoshiko Takahashi, Youichirou Ootsuka, Yuichi Kanmura, and Tomoyuki Kuwaki.
    • Departments of Physiology, Kagoshima UniversityGraduate School of Medical and Dental Sciences, Kagoshima, Japan.
    • Anesth. Analg.. 2013 May 1;116(5):1001-5.

    BackgroundOrexin neurons regulate the sleep/wake cycle and are proposed to influence general anesthesia. In animal experiments, orexin neurons have been shown to drive emergence from general anesthesia. In human studies, however, the role of orexin neurons remains controversial, owing at least, in part, to the fact that orexin neurons are multifunctional. Orexin neurons regulate not only the sleep/wake cycle, but also body temperature. We hypothesized that orexin neurons do not directly regulate emergence from anesthesia, but instead affect emergence indirectly through thermoregulation because anesthesia-induced hypothermia can greatly influence emergence time. To test our hypothesis, we used simultaneous measurement of body temperature and locomotor activity.MethodsWe used male orexin neuron-ablated (ORX-AB) mice and their corresponding wild-type (WT) littermates to investigate the role of orexin neurons in emergence. Body temperature was recorded using an intraperitoneally implanted telemetric probe, and locomotor activity was measured using an infrared motion sensor. Induction of anesthesia and emergence from anesthesia were defined behaviorally as loss and return, respectively, of body movement. Mice received general anesthesia with 1.5% isoflurane in 100% oxygen for 30 minutes under 3 conditions. In the first experiment, the anesthesia chamber was warmed (32 °C), ensuring a constant body temperature of animals during anesthesia. In the second experiment, the anesthesia chamber was maintained at room temperature (25 °C), allowing body temperature to fluctuate. In the third experiment in WT mice, the anesthesia chamber was cooled (23 °C) so that their body temperature would decrease to the comparable value to that obtained in the ORX-AB mice during room temperature condition.ResultsIn the warmed condition, there were no significant differences between the ORX-AB and control mice with respect to body temperature, locomotor activity, induction time, or emergence time. In the room temperature condition, however, anesthesia-induced hypothermia was greater and longer lasting in ORX-AB mice than that in WT mice. Emergence time in ORX-AB mice was significantly prolonged from the warmed condition (14.2 ± 0.8 vs 6.0 ± 1.1 minutes) whereas that in WT mice was not different (7.4 ± 0.8 vs 4.9 ± 0.2 minutes). When body temperature was decreased by cooling in WT mice, emergence time was prolonged to 12.4 ± 1.3 minutes. Induction time did not differ among temperature conditions or genotypes.ConclusionsThe effect of orexin deficiency to impair thermoregulation during general anesthesia is of sufficient magnitude that body temperature must be appropriately controlled when studying the role of orexin neurons in emergence from anesthesia.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.