• IEEE Trans Biomed Eng · Oct 2006

    Simulation of intramuscular EMG signals detected using implantable myoelectric sensors (IMES).

    • Madeleine M Lowery, Richard F ff Weir, and Todd A Kuiken.
    • School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland. madeleine.lowery@ucd.ie
    • IEEE Trans Biomed Eng. 2006 Oct 1;53(10):1926-33.

    AbstractThe purpose of this study was to test the feasibility of recording independent electromyographic (EMG) signals from the forearm using implantable myoelectric sensors (IMES), for myoelectric prosthetic control. Action potentials were simulated using two different volume conductor models: a finite-element (FE) model that was used to explore the influence of the electrical properties of the surrounding inhomogeneous tissues and an analytical infinite volume conductor model that was used to estimate the approximate detection volume of the implanted sensors. Action potential amplitude increased progressively as conducting electrodes, the ceramic electrode casing and high resistivity encapsulation tissue were added to the model. For the muscle fiber locations examined, the mean increase in EMG root mean square amplitude when the full range of material properties was included in the model was 18.2% (+/-8.1%). Changing the orientation of the electrode with respect to the fiber direction altered the shape of the electrode detection volume and reduced the electrode selectivity. The estimated detection radius of the IMES electrode, assuming a cylindrical muscle cross section, was 4.8, 6.2, and 7.5 mm for electrode orientations of 0 degree, 22.5 degrees, and 45 degrees with respect to the muscle fiber direction.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.