• J. Biol. Chem. · Nov 2003

    Oxidative stress reprograms lipopolysaccharide signaling via Src kinase-dependent pathway in RAW 264.7 macrophage cell line.

    • Rachel G Khadaroo, Andras Kapus, Kinga A Powers, Myron I Cybulsky, John C Marshall, and Ori D Rotstein.
    • Department of Surgery, University of Toronto and University Health Network, Toronto, Ontario M5G 2C4, Canada.
    • J. Biol. Chem. 2003 Nov 28;278(48):47834-41.

    AbstractOxidative stress generated during ischemia/reperfusion injury has been shown to augment cellular responsiveness. Whereas oxidants are themselves known to induce several intracellular signaling cascades, their effect on signaling pathways initiated by other inflammatory stimuli remains poorly elucidated. Previous work has suggested that oxidants are able to prime alveolar macrophages for increased NF-kappa B translocation in response to treatment with lipopolysaccharide (LPS). Because oxidants are known to stimulate the Src family of tyrosine kinases, we hypothesized that the oxidants might contribute to augmented NF-kappa B translocation by LPS via the involvement of Src family kinases. To model macrophage priming in vitro, the murine macrophage cell line, RAW 264.7, was first incubated with various oxidants and then exposed to low dose LPS. These studies show that oxidant stress is able to augment macrophage responsiveness to LPS as evidenced by earlier and increased NF-kappa B translocation. Inhibition of the Src family kinases by either pharmacological inhibition using PP2 or through a molecular approach by cell transfection with Csk was found to prevent the augmented LPS-induced NF-kappa B translocation caused by oxidants. Interestingly, while Src kinase inhibition was able to prevent the LPS-induced NF-kappa B translocation in oxidant-treated macrophages, this strategy had no effect on NF-kappa B translocation caused by LPS in the absence of oxidants. These findings suggested that oxidative stress might divert LPS signaling along an alternative signaling pathway. Further studies demonstrated that the Src-dependent pathway induced by oxidant pretreatment involved the activation of phosphatidylinositol 3-kinase. Involvement of this pathway appeared to be independent of traditional LPS signaling. Together, these studies provide a novel potential mechanism whereby oxidants might prime alveolar macrophages for altered responsiveness to subsequent inflammatory stimuli and suggest different cellular targets for immunomodulation following ischemia/reperfusion.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…