• Surgery · Aug 2003

    Oxidant-induced priming of the macrophage involves activation of p38 mitogen-activated protein kinase through an Src-dependent pathway.

    • Rachel G Khadaroo, Jean Parodo, Kinga A Powers, Giuseppe Papia, John C Marshall, Andras Kapus, and Ori D Rotstein.
    • Department of Surgery, University Health Network, and University of Toronto, Ontario, Canada.
    • Surgery. 2003 Aug 1;134(2):242-6.

    BackgroundResuscitated hemorrhagic shock predisposes patients to the development of organ dysfunction, particularly to lung injury. Ischemia/reperfusion during shock is believed to prime the immune system for an exaggerated inflammatory response to a second delayed stimulus. We previously reported an in vitro model of oxidant-induced priming of the macrophage to lipopolysaccharide (LPS) involves the Src family of tyrosine kinases. Because the Src family has been shown to activate the p38 mitogen-activated protein kinase (MAPK) pathway, we hypothesize that LPS signaling after oxidant stress involves the p38 pathway and is activated by Src kinases.MethodsThe murine macrophage cell line, Raw 264.7, was first incubated with H(2)O(2) 100 micromol/L for 1 hour and then with low dose LPS 0.01 microg/mL for 5 to 45 minutes. In a separate experiment, the cells were pretreated with PP2 or SB203580, a specific inhibitor of the Src family and p38 respectively. The phosphorylation of p38, representative of its activation, was assessed in whole cell lysates by use of Western blotting. NF-kappaB translocation was detected by immunofluorescence with anti-p65 antibody.ResultsThere is a time dependent earlier activation of p38 by oxidant stress. H(2)O(2) augmented the LPS-induced p38 phosphorylation. The Src inhibitor, PP2, prevented only the LPS-induced earlier phosphorylation after oxidant stress and had no effect on LPS activation of p38 alone. The p38 inhibitor had no effect in preventing NF-kappaB translocation in either the LPS- or H(2)O(2)/LPS-exposed cells.ConclusionsOxidant stress generated during global ischemia/reperfusion activates p38 MAPK in an Src-dependent manner. Oxidants seem to alter the LPS-induced activation of p38. P38 does not seem to have a direct role in leading to oxidant-induced NF-kappaB translocation but may affect other oxidant-induced transcription factors. This altered pathway provides an alternative avenue to target therapy during the oxidant-induced priming of the macrophage induced by trauma resuscitation.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.