• Eur. J. Nucl. Med. Mol. Imaging · Jul 2003

    Comparative Study Clinical Trial Controlled Clinical Trial

    Role of ventilation scintigraphy in diagnosis of acute pulmonary embolism: an evaluation using artificial neural networks.

    • Eva Evander, Holger Holst, Andreas Järund, Mattias Ohlsson, Per Wollmer, Karl Aström, and Lars Edenbrandt.
    • Department of Clinical Physiology, University Hospital, Lund University, 221 85, Lund, Sweden. eva.evander@skane.se
    • Eur. J. Nucl. Med. Mol. Imaging. 2003 Jul 1;30(7):961-5.

    AbstractThe purpose of this study was to assess the value of the ventilation study in the diagnosis of acute pulmonary embolism using a new automated method. Either perfusion scintigrams alone or two different combinations of ventilation/perfusion scintigrams were used as the only source of information regarding pulmonary embolism. A completely automated method based on computerised image processing and artificial neural networks was used for the interpretation. Three artificial neural networks were trained for the diagnosis of pulmonary embolism. Each network was trained with 18 automatically obtained features. Three different sets of features originating from three sets of scintigrams were used. One network was trained using features obtained from each set of perfusion scintigrams, including six projections. The second network was trained using features from each set of (joint) ventilation and perfusion studies in six projections. A third network was trained using features from the perfusion study in six projections combined with a single ventilation image from the posterior view. A total of 1,087 scintigrams from patients with suspected pulmonary embolism were used for network training. The test group consisted of 102 patients who had undergone both scintigraphy and pulmonary angiography. Performances in the test group were measured as area under the receiver operation characteristic curve. The performance of the neural network in interpreting perfusion scintigrams alone was 0.79 (95% confidence limits 0.71-0.86). When one ventilation image (posterior view) was added to the perfusion study, the performance was 0.84 (0.77-0.90). This increase was statistically significant ( P=0.022). The performance increased to 0.87 (0.81-0.93) when all perfusion and ventilation images were used, and the increase in performance from 0.79 to 0.87 was also statistically significant ( P=0.016). The automated method presented here for the interpretation of lung scintigrams shows a significant increase in performance when one or all ventilation images are added to the six perfusion images. Thus, the ventilation study has a significant role in the diagnosis of acute lung embolism.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…