• Burns · Mar 2016

    Construction of an immunorelated protein-protein interaction network for clarifying the mechanism of burn.

    • Yanbin Gao, Wenqing Nai, Lei Yang, Zhiyang Lu, Pengwei Shi, Hui Jin, Huangding Wen, and Guifang Wang.
    • Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
    • Burns. 2016 Mar 1; 42 (2): 405-13.

    Background And AimSevere burn is known to induce a series of pathological responses resulting in increased susceptibility to systemic inflammatory response and multiple organ failure, but the underlying molecular mechanism remains unclear at present. The main aim of this study was to expand our understanding of the events leading to circulating leukocyte response after burn by subjecting the gene expression profiles to a bioinformatic analysis.Materials And MethodsComprehensive gene expression analysis was performed to identify differentially expressed genes (DEGs) using the expression profile GSE7404 (Mus musculus, circulating leukocyte, 25% of total body surface area (TBSA), full thickness) downloaded from the Gene Expression Omnibus, followed by the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. In addition, a postburn protein-protein interaction (PPI) network was constructed to identify potential biomarkers.ResultsMaximum changes in the gene expression profile were detected 1 day post burn. Separate Gene Ontology (GO) functional enrichment analysis for upregulated and downregulated DEGs revealed significant alterations of genes related to biological process such as "response to stimuli," "metabolic," "cellular and immune system processes," "biological regulation," and "death" in the leukocyte transcriptome after the burn. The KEGG pathway enrichment analysis showed that the upregulated DEGs were significantly enriched in the nodes of immunorelated and signal transduction-related pathways, and the downregulated genes were significantly enriched for the immunorelated pathways. The PPI network and module analysis revealed that, 1 day after the burn, lymphocyte-specific protein tyrosine kinase (Lck) (downregulated), Jun (upregulated), Cd19 (downregulated), Stat1 (downregulated), and Cdk1 (upregulated) were located centrally in both the PPI network and modules.ConclusionsBased on an integrated bioinformatic analysis, we concluded that Lck, Jun, Cd19, Stat1, and Cdk1 may be critical 1 day after the burn. These findings expand our understanding of the molecular mechanisms of this important pathological process. Further studies are needed to support our work, focused on identifying candidate biomarkers with sufficient predictive power to act as prognostic and therapeutic biomarkers for burn injury.Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.