• J. Pharmacol. Exp. Ther. · Feb 2005

    Depression by isoflurane of the action potential and underlying voltage-gated ion currents in isolated rat neurohypophysial nerve terminals.

    • Wei Ouyang and Hugh C Hemmings.
    • Department of Anesthesiology, Weill Medical College of Cornell University, Box 50, LC-203, 525 E. 68th St., New York, NY 10021, USA.
    • J. Pharmacol. Exp. Ther. 2005 Feb 1;312(2):801-8.

    AbstractWe characterized the effects of the volatile anesthetic isoflurane on the ion currents that contribute to the action potential (AP) in isolated rat neurohypophysial (NHP) nerve terminals using patch-clamp electrophysiology. Mean resting membrane potential and AP amplitude were -62.3 +/- 4.1 and 69.2 +/- 2.9 mV, respectively, in NHP terminals. Two components of outward K(+) current (I(K)) were identified in voltage-clamp recordings: a transient I(K) and a sustained I(K) with minimal inactivation. Some terminals displayed a slowly activating I(K), probably the big Ca(2+)-activated K(+) current (BK). Isoflurane reversibly inhibited AP amplitude and increased AP half-width in normal extracellular Ca(2+) (2.2 mM). In high extracellular Ca(2+) (10 mM), isoflurane also reduced the afterhypolarization peak amplitude. A transient tetrodotoxin-sensitive Na(+) current (I(Na)) was the principal current mediating the depolarizing phase of the AP. A slowly inactivating Cd(2+)-sensitive current (probably a voltagegated Ca(2+) current; I(Ca)) followed the initial I(Na). Isoflurane reversibly inhibited both I(Na) and I(Ca) elicited by a voltage-stimulus based on an averaged AP waveform. The isoflurane IC(50) for AP waveform-evoked I(Na) was 0.36 mM. Isoflurane (0.84 +/- 0.04 mM) inhibited AP waveform-evoked I(Ca) by 37.5 +/- 0.16% (p < 0.05). The isoflurane IC(50) for peak I(K) was 0.83 mM and for sustained I(K) was 0.73 mM, with no effect on the voltage dependence of activation. The results indicate that multiple voltage-gated ion channels (Na(+) > K(+) > Ca(2+)) in NHP terminals, although not typical central nervous system terminals, are inhibited by the volatile general anesthetic isoflurane. The net inhibitory effects of volatile anesthetics on nerve terminal action potentials and excitability result from integrated actions on multiple voltage-gated currents.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.