• Epilepsy research · Oct 2010

    Comparative Study

    Patient-specific bivariate-synchrony-based seizure prediction for short prediction horizons.

    • Levin Kuhlmann, Dean Freestone, Alan Lai, Anthony N Burkitt, Karen Fuller, David B Grayden, Linda Seiderer, Simon Vogrin, Iven M Y Mareels, and Mark J Cook.
    • Department of Electrical and Electronic Engineering, The University of Melbourne, Australia. levink@unimelb.edu.au
    • Epilepsy Res. 2010 Oct 1;91(2-3):214-31.

    AbstractThis paper evaluates the patient-specific seizure prediction performance of pre-ictal changes in bivariate-synchrony between pairs of intracranial electroencephalographic (iEEG) signals within 15min of a seizure in patients with pharmacoresistant focal epilepsy. Prediction horizons under 15min reduce the durations of warning times and should provide adequate time for a seizure control device to intervene. Long-term continuous iEEG was obtained from 6 patients. The seizure prediction performance was evaluated for all possible channel pairs and for different prediction methods to find the best performing channel pairs and methods for both pre-ictal decreases and increases in synchrony. The different prediction methods involved changes in window duration, signal filtering, thresholding approach, and prediction horizon durations. Performance for each patient, for all seizures, was first compared with an analytical-Poisson-based random predictor. The performance of the top 5% of channel pairs for each patient closely matched the top 5% of analytical-Poisson-based random predictor performance indicating that patient-specific, bivariate-synchrony-based seizure prediction could be random in general (under the assumption that channel-pair prediction times are statistically independent). Analysis of the spatial patterns of performance showed no clear relationship to the seizure onset zone. For each patient the best channel pair showed better performance than Poisson-based random prediction for a selected subset of prediction thresholds. Given the caveats of comparing with this form of random prediction, alarm time surrogates were employed to assess statistical significance of a four-fold out-of-sample cross-validation analysis applied to the best channel-pairs. The cross-validation analysis obtained reasonable testing performance for most patients when performance was compared to random prediction based on alarm time surrogates. The most significant case was a patient whose testing set sensitivity and false positive rate were 0.67±0.09 and 3.04±0.29h(-1), respectively, for decreases in synchrony, an intervention time of 15min and a seizure onset period of 5min. For each testing set for this patient, performance was better than that obtained by random prediction at the significance level of 0.05 (average sensitivity of 0.47±0.05). Moreover, there were 9 seizures in each testing set which gives greater power to this cross-validation result, although the cross-validation was performed on the best channel pair selected by within-sample optimization for all seizures of the patient. Further validation with larger datasets from individual patients is needed. Improvements in prediction performance should be achievable through investigations of multivariate synchrony combined with non-linear classification methods.Copyright © 2010 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…