• IEEE Trans Biomed Eng · Jun 2001

    Finite-element analysis of aortic valve-sparing: influence of graft shape and stiffness.

    • K J Grande-Allen, R P Cochran, P G Reinhall, and K S Kunzelman.
    • Department of Biomedical Engineering, Cleveland Clinic Foundation, OH 44195, USA.
    • IEEE Trans Biomed Eng. 2001 Jun 1;48(6):647-59.

    AbstractAortic valve incompetence due to aortic root dilation may be surgically corrected by resuspension of the native valve within a vascular graft. This study was designed to examine the effect of graft shape and material properties on aortic valve function, using a three-dimensional finite-element model of the human aortic valve and root. First, the normal root elements in the model were replaced with graft elements, in either a cylindrical or a "pseudosinus" shape. Next, the elements were assigned the material properties of either polyethylene terephthalate, expanded polytetrafluoroethylene, or polyurethane. Diastolic pressures were applied, and stresses, strains, and coaptation were recorded for the valve, root, and graft. Regarding shape, the cylindrical graft models increased the valve stresses by up to 173%, whereas the root-shaped graft model increased valve stresses by up to 40% as compared to normal. Regarding material properties, the polyurethane models demonstrated valve stress, strain, and coaptation values closest to normal, for either root shape. Graft shape had a greater effect on the simulated valve function than did the material property of the graft. Optimizing the shape and material design of the graft may result in improved longevity of the spared valve if a normal environment is restored.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.