• Crit Care · Apr 2005

    Comparative Study

    Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room.

    • Fabián Jaimes, Jorge Farbiarz, Diego Alvarez, and Carlos Martínez.
    • Department of Internal Medicine, Escuela de Investigaciones Médicas Aplicadas (EIMA - GRAEPI), School of Medicine, Universidad de Antioquia, Medellín, Colombia. fjaimes@catios.udea.edu.co
    • Crit Care. 2005 Apr 1;9(2):R150-6.

    IntroductionNeural networks are new methodological tools based on nonlinear models. They appear to be better at prediction and classification in biological systems than do traditional strategies such as logistic regression. This paper provides a practical example that contrasts both approaches within the setting of suspected sepsis in the emergency room.MethodsThe study population comprised patients with suspected bacterial infection as their main diagnosis for admission to the emergency room at two University-based hospitals. Mortality within the first 28 days from admission was predicted using logistic regression with the following variables: age, immunosuppressive systemic disease, general systemic disease, Shock Index, temperature, respiratory rate, Glasgow Coma Scale score, leucocyte counts, platelet counts and creatinine. Also, with the same input and output variables, a probabilistic neural network was trained with an adaptive genetic algorithm. The network had three neurone layers: 10 neurones in the input layer, 368 in the hidden layer and two in the output layer. Calibration was measured using the Hosmer-Lemeshow goodness-of-fit test and discrimination was determined using receiver operating characteristic curves.ResultsA total of 533 patients were recruited and overall 28-day mortality was 19%. The factors chosen by logistic regression (with their score in parentheses) were as follows: immunosuppressive systemic disease or general systemic disease (2), respiratory rate 24-33 breaths/min (1), respiratory rate > or = 34 breaths/min (3), Glasgow Come Scale score < or = 12 (3), Shock Index > or = 1.5 (2) and temperature < 38 degrees C (2). The network included all variables and there were no significant differences in predictive ability between the approaches. The areas under the receiver operating characteristic curves were 0.7517 and 0.8782 for the logistic model and the neural network, respectively (P = 0.037).ConclusionA predictive model would be an extremely useful tool in the setting of suspected sepsis in the emergency room. It could serve both as a guideline in medical decision-making and as a simple way to select or stratify patients in clinical research. Our proposed model and the specific development method -- either logistic regression or neural networks -- must be evaluated and validated in an independent population.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…