• Experimental neurology · Feb 2005

    Intrinsic neural circuits between dorsal midbrain neurons that control fear-induced responses and seizure activity and nuclei of the pain inhibitory system elaborating postictal antinociceptive processes: a functional neuroanatomical and neuropharmacological study.

    • Renato L Freitas, Célio M R Ferreira, Sandro J Ribeiro, Andressa D Carvalho, Daoud H Elias-Filho, Norberto Garcia-Cairasco, and Norberto Cysne Coimbra.
    • Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900 Avenida dos Bandeirantes, 3900 Ribeirão Preto (SP), Brasil.
    • Exp. Neurol. 2005 Feb 1;191(2):225-42.

    AbstractThe blockade of GABA-mediated Cl(-) influx with pentylenetetrazol (PTZ) was used in the present work to induce seizures in Rattus norvegicus. The aim of this work was to study the involvement of monoamines in the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). The analgesia was measured by the tail-flick test in seven or eight Wistar rats per group. Convulsions were followed by statistically significant increase in the tail-flick latencies (TFL), at least for 120 min of the postictal period. Peripheral administration of methysergide (0.5, 1, 2, and 3 mg/kg) caused a significant decrease in the TFL in seizing animals, as compared to controls, in all postictal periods studied. These findings were corroborated by the pretreatment with ketanserin, a 5-HT(2A/2C)-serotonergic/alpha(1)-noradrenergic receptors antagonist, at the same doses. Peripheral administration of yohimbine (0.5, 1, 2, and 3 mg/kg), alpha(2)-noradrenergic antagonist, also decreased the postictal analgesia either at initial or more terminal periods of the postictal analgesia. These data were corroborated with peripheral administrations of propranolol, a beta-noradrenergic receptor blocker that caused a decrease in the postictal analgesia consistently in later stages (after the first 20-min post-tonic-clonic convulsive reactions) of the post-seizure analgesia, except for the highest dose. These results indicate that monoamines may be involved in the postictal analgesia. The blockade of 5-HT(2A/2C)-serotoninergic, alpha(1)-noradrenergic, or alpha(2)-noradrenergic receptors before tonic clonic seizure-induced analgesia antagonized the increase in the nociceptive threshold caused by seizures in initial steps of the temporal antinociceptive curve, as compared to the blockade of beta-noradrenergic ones. These findings suggest that the recruitment of alpha-noradrenergic receptor and serotonergic receptors was made immediately after convulsions and in other initial periods of the postictal analgesia, as compared to the involvement of beta-noradrenergic receptor. Neurochemical lesions of the locus coeruleus (LC) and neuronal damage of the dorsal raphe nucleus induced a significant decrease of the postictal analgesia, suggesting the involvement of these nuclei in this antinociceptive process. The functional neuroanatomical study of the neural link between the mesencephalic tectum and nuclei of the central pain inhibitory system showed evidence for the interconnection between superior colliculus, both dorsal and ventral periaqueductal gray matter (PAG), and inferior colliculus. Defensive substrates of the inferior colliculus, also involved with wild running and epilepsy, send inputs toward dorsal raphe nucleus and locus coeruleus. Since these nuclei are rich in monoamines and send neural connections toward other monoaminergic nuclei of the brainstem involved with the control of the nociceptive inputs in the dorsal horn of the spinal cord, the present results offer a neuroanatomical and psychopharmacological basis for the antinociceptive processes following tonic-clonic seizures.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.