• Arch Phys Med Rehabil · Aug 2003

    Comparative Study

    Predicting oxygen uptake for men and women with moderate to severe chronic obstructive pulmonary disease.

    • Rick Carter, David B Holiday, James Stocks, Carol Grothues, and Brian Tiep.
    • University of Texas Health Center, Tyler, TX 75708, USA. Rick.Carter@uthct.edu
    • Arch Phys Med Rehabil. 2003 Aug 1;84(8):1158-64.

    ObjectiveTo develop regression equations for estimating peak oxygen consumption (Vo(2)) for men and women with moderate to severe chronic obstructive pulmonary disease (COPD) from the 6-minute walk test (6MWT).DesignMultivariate analysis of patient pulmonary function and exercise gas exchange indices to 2 outcomes for the 6MWT (distance ambulated, calculated work [6M(WORK)]).SettingA university hospital and clinics.ParticipantsA total of 124 patients (90 men 34 women; age range, 45\N81y), from the community, with moderate to very severe COPD. Forced expiratory volume in 1 second (FEV(1)) ranged from.70 to 2.79L/min, forced vital capacity (FVC) ranged from 1.73 to 5.77L, and FEV(1)/FVC ranged from 24% to 69%. All patients were in stable condition at the time of testing and were on a stable drug regimen.InterventionsNot applicable.Main Outcome MeasuresPulmonary function testing was completed according to American Thoracic Society criteria. Cycle ergometry with gas exchange, by using a ramp protocol, was completed. The 6MWT was done in the hospital corridor, with distances recorded after each minute. Work capacity by each method was reduced from the normal predicted.ResultsPeak oxygen uptake (Vo(2)) averaged 1184+/-302mL/min for men and 860+/-256mL/min for women (58%, 68% of predicted, respectively). Ventilatory reserve was limited at an achieved peak ventilation (Ve) of 79.9%+/-19.1% of predicted. Borg scores for dyspnea and leg fatigue were equivalent for each test modality, with leg fatigue being slightly higher for each gender. 6M(WORK) for the 6MWT was the strongest independent predictor of peak Vo(2) (r=.81, P<.0001), whereas that for distance ambulated was correlated at r equal to.54 (P<.0001). This is a 36% improvement in the variance accounted for by the application of 6M(WORK) as the outcome for the 6MWT. Generalized regression modeling was then used to develop equations for the estimation of peak Vo(2) for the 6MWT. Additional variables included in the model were diffusing capacity of lung for carbon dioxide, FVC, maximal inspiratory pressure, weight (in kilograms), and age, with their appropriate interactions. This derived regression model accounted for 79% on the variance for estimation of peak Vo(2) in the patients studied.ConclusionPeak Vo(2) can be estimated for men and for women by using the generalized equations presented. The calculation of 6M(WORK) is an improvement over distance ambulated as the 6MWT outcome. These data build on the existing body of knowledge for the 6MWT and extend its application for patients with COPD. Knowledge of the peak Vo(2) can be used for patient assessment, serial monitoring, evaluating disability, and as a common index of function across modalities. The calculation of 6M(WORK) outperformed distance ambulated and is easily converted to other indices of caloric expenditure that are commonly used in the laboratory and clinical settings.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.