• Restor Neurol Neuros · Jan 2008

    Review

    Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems.

    • Roman J Giger, Karthik Venkatesh, Onanong Chivatakarn, Stephen J Raiker, Laurie Robak, Thomas Hofer, Hakjoo Lee, and Christoph Rader.
    • Center for Neural Development and Disorder, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA. Roman_Giger@URMC.Rochester.edu
    • Restor Neurol Neuros. 2008 Jan 1;26(2-3):97-115.

    AbstractFollowing injury to the adult mammalian central nervous system, regenerative growth of severed axons is very limited. The lack of neuronal repair is often associated with significant functional deficits, and depending on the severity of injury, may result in permanent paralysis distal to the site of injury. A detailed understanding of the molecular mechanisms that limit neuronal growth in the injured spinal cord is an important step toward the development of specific strategies aimed at restoring functional connectivity lost as a consequence of injury. While rapid progress is being made in defining the molecular identity of CNS growth inhibitory constituents, comparatively little is known about their receptors and downstream signaling mechanisms. Emerging new evidence suggests that the mechanisms for myelin inhibition are likely to be complex, involving multiple and distinct receptor systems that may operate in a redundant manner. Furthermore, the relative contribution of a specific ligand-receptor system to bring about growth inhibition may greatly vary among different neuronal cell types. Myelin-associated glycoprotein (MAG), for example, employs different mechanisms to inhibit neurite outgrowth of cerebellar, sensory, and retinal ganglion neurons in vitro. Nogo-A harbors distinct growth inhibitory regions, which employ different signaling mechanisms. The Nogo-66 receptor 1 (NgR1), a shared ligand binding component in a receptor complex for Nogo-66, MAG, and OMgp, participates in neuronal growth cone collapse to acutely presented myelin inhibitors, but is dispensable for longitudinal neurite outgrowth inhibition on substrate-bound Nogo-66, MAG, OMgp, or crude CNS myelin in vitro. Consistent with the idea of cell-type specific mechanisms for myelin inhibition, different types of CNS neurons possess very different regenerative capacities and respond differently to experimental treatment strategies in vivo. We speculate that differences in regenerative axonal growth among different fiber systems are a reflection of their intrinsic ability to elongate axons and their distinct cell surface receptor profiles to respond to the growth inhibitory extracellular milieu. The existence of cell type specific mechanisms to impair regenerative axonal growth in the CNS may have important implications for the development of treatment strategies. Depending on the fiber tract injured, different ligand-receptor systems may need to be targeted in order to elicit robust and long-distance regenerative axonal growth.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.