-
Journal of critical care · Mar 2010
Insight in microcirculation and histomorphology during burn shock treatment using in vivo confocal-laser-scanning microscopy.
- Mehmet Ali Altintas, Ahmet Ali Altintas, Merlin Guggenheim, Matthias C Aust, Andreas David Niederbichler, Karsten Knobloch, and Peter M Vogt.
- Department of Plastic, Hand and Reconstructive Surgery, Medical School Hannover, 30625 Hannover, Germany. altintas.mehmet@mh-hannover.de
- J Crit Care. 2010 Mar 1;25(1):173.e1-7.
PurposeMicrocirculatory disturbances are well known during shock; however, the accompanied histomorphological alterations are widely unknown. We used high resolution confocal-laser-scanning microscopy for the evaluation of microcirculation and histomorphology during Burn Shock treatment.MethodsConfocal-laser-scanning microscopy was performed in 10 burn shock patients (4 women, 6 men; aged 40.6 +/- 11.4 years, burn extent >20% body surface area) initially and 24 hours after shock resuscitation. Ten matched hemodynamic stable burn intensive care unit patients served as controls. The following parameters were evaluated: quantitative blood cell flow, cell size of the granular layer, basal layer thickness, and epidermal thickness.ResultsQuantitative blood cell flow in controls was 62.45 +/- 3.39 cells per minute. Burn shock significantly reduced blood cell flow to 37.27 +/- 3.64 cells per minute; fluid resuscitation effectively restored baseline blood flow (65.18 +/- 3.76 cells per minute) after 24 hours. Granular cell size was 793.61 +/- 41.58 microm(2) in controls vs 644.27 +/- 42.96 microm(2) during burn shock. Post resuscitation granular cell size measured 932.74 +/- 38.83 microm(2). Basal layer thickness was 14.84 +/- 0.59 microm in controls, 13.26 +/- 0.54 microm in burn patients at admission and before resuscitation, and 17.50 +/- 0.46 microm after resuscitation. Epidermal thickness in control patients was 49.60 +/- 2.36 microm, 37.83 +/- 2.47 microm in burn patients at admission and 69.50 +/- 3.18 microm after resuscitation.ConclusionsConfocal-laser-scanning microscopy provides a noninvasive tool for simultaneous evaluation of microcirculation and tissue histomorphology. It may help to assess the adequacy of and response to resuscitation of burn patients early after trauma.Copyright 2010 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.