• Indian J Psychiatry · Jan 2009

    Neurobiology of Alzheimer's disease.

    • E Mohandas, V Rajmohan, and B Raghunath.
    • Indian J Psychiatry. 2009 Jan 1;51(1):55-61.

    AbstractAlzheimer's disease (AD) is a devastating neurodegenerative disease, the most common among the dementing illnesses. The neuropathological hallmarks of AD include extracellular beta-amyloid (amyloid precursor protein (APP) deposits, intracellular neurofibrillary tangles (NFT)), dystrophic neuritis and amyloid angiopathy. The mismetabolism of APP and the defective clearance of beta amyloid generate a cascade of events including hyperphosphorylated tau (tau) mediated breakdown of microtubular assembly and resultant synaptic failure which results in AD. The exact aetiopathogenesis of AD is still obscure. The preeminent hypotheses of AD include amyloid cascade hypothesis and tau hyperphosphorylation. The amyloid hypothesis states that extracellular amyloid plaques formed by aggregates of Abeta peptide generated by the proteolytic cleavages of APP are central to AD pathology. Intracellular assembly states of the oligomeric and protofibrillar species may facilitate tau hyperphosphorylation, disruption of proteasome and mitochondria function, dysregulation of calcium homeostasis, synaptic failure, and cognitive dysfunction. The tau hypothesis states that excessive or abnormal phosphorylation of tau results in the transformation of normal adult tau into PHF-tau (paired helical filament) and NFTs. Vascular hypothesis is also proposed for AD and it concludes that advancing age and the presence of vascular risk factors create a Critically Attained Threshold of Cerebral Hypoperfusion (CATCH) which leads to cellular and subcellular pathology involving protein synthesis, development of plaques, inflammatory response, and synaptic damage leading to the manifestations of AD. Multiple other aetiological and pathogenetic hypotheses have been put forward including genetics, oxidative stress, dysfunctional calcium homeostasis, hormonal, inflammatory-immunologic, and cell cycle dysregulation with the resultant neurotransmitter dysfunctions and cognitive decline. The available therapeutic agents target only the neurotransmitter dysfunction in AD and agents specifically targeting the pathogenetic mechanisms like amyloid deposition and tau hyperphosphorylation might provide a definite therapeutic edge.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.