• Artificial organs · Jul 2015

    Multisite Near Infrared Spectroscopy During Cardiopulmonary Bypass in Pediatric Patients.

    • Zaccaria Ricci, Roberta Haiberger, Lorenzo Tofani, Stefano Romagnoli, Isabella Favia, and Paola Cogo.
    • Department of Cardiology and Cardiac Surgery, Pediatric Cardiac Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
    • Artif Organs. 2015 Jul 1; 39 (7): 584-90.

    AbstractMultisite near infrared spectroscopy (NIRS) monitoring during pediatric cardiopulmonary bypass (CPB) has not been extensively validated. Although it might be rational to explore regional tissue saturation at different body sites (namely brain, kidney, upper body, lower body), conflicting results are currently provided by experience in children. The aim of our study was to evaluate absolute values of multisite NIRS saturation during CPB in a cohort of infants undergoing pediatric cardiac surgery to describe average differences between cerebral, renal, upper body (arm), and lower body (thigh) regional saturation. Furthermore, the correlation between cerebral NIRS and cardiac index (CI) at CPB weaning was evaluated. Twenty-five infants were enrolled: their median weight, age, and body surface area were 3.9 (3.3-6) kg, 111 (47-203) days, and 0.24 (0.22-0.33) m(2) , respectively. Median Aristotle score was 8 (6-10), and vasoactive inotropic score at CPB weaning was 16 (14-25). A total of 17 430 data points were recorded by each sensor: two-way ANOVA showed that time (P < 0.0001) and site (P = 0.0001) significantly affected variations of NIRS values: however, if cerebral NIRS values are excluded, sensor site is no more significant (P = 0.184 in the no circulatory arrest [noCA] group and P = 0.42 in the circulatory arrest [CA] group). Analysis of NIRS saturation changes over time showed that, at all sites, average NIRS values increased after CPB start, even if the increase of cerebral saturation was less intense than other sites (P < 0.0001). Detailed analysis of interaction between site of NIRS measurement and time point showed that cerebral NIRS (ranging from 65 to 75%) was always significantly lower than that of other channels (P < 0.0001) that tended to be in the range of oversaturation (80-90%), especially during the CPB phase. Average cerebral NIRS values of patients who did not undergo circulatory arrest (CA) during CPB, 10 min after CPB weaning, were associated with average CI values with a significant correlation (r = 0.7, P = 0.003). In conclusion, during CPB, cerebral NIRS values are expected to remain constantly lower than somatic sensors, which instead tend to show similar elevated saturations, regardless of their position. Based on these results, positioning of noncerebral NIRS sensors during CPB without CA may be questioned. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…