• Proc. Natl. Acad. Sci. U.S.A. · Oct 2012

    SAM-pointed domain ETS factor mediates epithelial cell-intrinsic innate immune signaling during airway mucous metaplasia.

    • Thomas R Korfhagen, Joseph Kitzmiller, Gang Chen, Anusha Sridharan, Hans-Michael Haitchi, Rashmi S Hegde, Senad Divanovic, Christopher L Karp, and Jeffrey A Whitsett.
    • Division of Neonatology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
    • Proc. Natl. Acad. Sci. U.S.A. 2012 Oct 9;109(41):16630-5.

    AbstractAirway mucus plays a critical role in clearing inhaled toxins, particles, and pathogens. Diverse toxic, inflammatory, and infectious insults induce airway mucus secretion and goblet cell metaplasia to preserve airway sterility and homeostasis. However, goblet cell metaplasia, mucus hypersecretion, and airway obstruction are integral features of inflammatory lung diseases, including asthma, chronic obstructive lung disease, and cystic fibrosis, which cause an immense burden of morbidity and mortality. These chronic lung diseases are united by susceptibility to microbial colonization and recurrent airway infections. Whether these twinned phenomena (mucous metaplasia, compromised host defenses) are causally related has been unclear. Here, we demonstrate that SAM pointed domain ETS factor (SPDEF) was induced by rhinoviral infection of primary human airway cells and that cytoplasmic activities of SPDEF, a transcriptional regulator of airway goblet cell metaplasia, inhibited Toll-like receptor (TLR) activation of epithelial cells. SPDEF bound to and inhibited activities of TLR signaling adapters, MyD88 and TRIF, inhibiting MyD88-induced cytokine production and TRIF-induced interferon β production. Conditional expression of SPDEF in airway epithelial cells in vivo inhibited LPS-induced neutrophilic infiltration and bacterial clearance. SPDEF-mediated inhibition of both TLR and type I interferon signaling likely protects the lung against inflammatory damage when inciting stimuli are not eradicated. Present findings provide, at least in part, a molecular explanation for increased susceptibility to infection in lung diseases associated with mucous metaplasia and a mechanism by which patients with florid mucous metaplasia may tolerate microbial burdens that are usually associated with fulminant inflammatory disease in normal hosts.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.