• Eur J Pharm Sci · Nov 2011

    Salvianolic acid B and its liposomal formulations: anti-hyperalgesic activity in the treatment of neuropathic pain.

    • Benedetta Isacchi, Valentina Fabbri, Nicoletta Galeotti, Maria Camilla Bergonzi, Anastasia Karioti, Carla Ghelardini, Maria Giuliana Vannucchi, and Anna Rita Bilia.
    • Department of Pharmaceutical Sciences, University of Florence, via U. Schiff 6, Sesto Fiorentino, Florence, Italy. benedetta.isacchi@unifi.it
    • Eur J Pharm Sci. 2011 Nov 20;44(4):552-8.

    AbstractSalvianolic acid B (SalB) represents the most characteristic constituent of Salvia miltiorrhiza Bge. with a strong free radicals scavenger activity. This property may be useful in the treatment of some severe chronic diseases, where there is an imbalance of reactive oxygen species formation and where intracellular reactive oxygen and nitrogen species level can cause severe cell damage and even cell death. In particular, SalB can protect against the oxidative stress as well as the antioxidant superoxide dismutase and reduced activity of glutathione, important determinants of neuropathological and behavioural consequences in neuropathic pain. This is a chronic disease defined by the WHO as an untreatable illness because therapeutics are unsatisfactory in many cases and there is an urgent need to discover and develop novel active drugs. In the present work, SalB has been extracted and purified with an efficient and rapid method from the roots and rhizome of S. miltiorrhiza Bge. It was firstly submitted to pharmacological studies using the paw-pressure test, in an animal model of neuropathic pain where a peripheral mono neuropathy was produced by a chronic constriction injury of the sciatic nerve. SalB was effective against mechanical hyperalgesia when administered intraperitoneally at the dose of 100mg/kg, 15 min after administration. Due to the poor chemical stability and bioavailability of SalB, liposomes were developed as drug carriers for parental administration. SalB-loaded liposomes were characterised in terms of particle size, polydispersity index, encapsulation efficacy and morphology. According to the in vivo studies, encapsulation, especially into PEGylated liposomes, increased and prolonged the antihyperalgesic activity 30 min after i.p. administration and the effect was still significant at 45 min. Thus, PEGylated formulation ameliorated the performance of drug delaying, increasing and prolonging in time its antihyperalgesic effect.Copyright © 2011 Elsevier B.V. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…