• Sleep · Jun 2004

    Sleep homeostasis in Drosophila melanogaster.

    • Reto Huber, Sean L Hill, Carie Holladay, Melissa Biesiadecki, Giulio Tononi, and Chiara Cirelli.
    • Department of Psychiatry, University of Wisconsin, Madison 53719, USA.
    • Sleep. 2004 Jun 15;27(4):628-39.

    Study ObjectivesThe fruit fly Drosophila melanogaster is emerging as a promising model system for the genetic dissection of sleep. As in mammals, sleep in the fruit fly is a reversible state of reduced responsiveness to the external world and has been defined using an array of behavioral, pharmacologic, molecular, and electrophysiologic criteria. A central feature of mammalian sleep is its homeostatic regulation by the amount of previous wakefulness. Dissecting the mechanisms of homeostatic regulation is likely to provide key insights into the functions of sleep. Thus, it is important to establish to what extent sleep homeostasis is similar between mammals and flies. This study was designed to determine whether in flies, as in mammals, (1) sleep rebound is dependent on prior time awake; (2) sleep deprivation affects the intensity, in addition to the duration, of sleep rebound; (3) sleep loss impairs vigilance and performance; (4) the sleep homeostatic response is conserved among different wild-type lines, and between female and male flies of the same line.DesignMotor activity of individual flies was recorded at 1-minute intervals using the infrared Drosophila Activity Monitoring System during 2 baseline days; during 6, 12, and 24 hours of sleep deprivation; and during 2 days of recovery. Sleep was defined as any period of uninterrupted behavioral immobility lasting > 5 minutes. Sleep continuity was measured by calculating the number of brief awakenings, the number and duration of sleep episodes, and a sleep continuity score. Vigilance before and after sleep deprivation was assessed by measuring the escape response triggered by 2 different aversive stimuli.SettingFly sleep research laboratory at UW-Madison.Participants And InterventionsAdult flies of the Canton-S (CS) strain and 116 other wild-type lines (> or = 16 female and > or = 16 male flies per line).Measurements And ResultsIn wild-type CS flies, as in mammals, the amount of sleep recovered after sleep deprivation was dependent on prior time awake. Relative to baseline sleep, recovery sleep in CS flies was less fragmented, with longer sleep episodes, and was associated with a higher arousal threshold. Sleep deprivation in CS flies also reduced performance. Sleep duration and continuity increased after 24 hour of sleep deprivation in all the other wild-type lines tested.ConclusionThe sleep homeostatic response in fruit flies is a stable phenotype and shares most of, if not all, the major features of mammalian sleep homeostasis, thus supporting the use of Drosophila as a model system for the genetic dissection of sleep mechanisms and functions.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.