• Health Care Manag Sci · Mar 2015

    A predictive analytics approach to reducing 30-day avoidable readmissions among patients with heart failure, acute myocardial infarction, pneumonia, or COPD.

    • Issac Shams, Saeede Ajorlou, and Kai Yang.
    • Healthcare Systems Engineering Group, Wayne State University, Detroit, MI, 48201, USA, er7671@wayne.edu.
    • Health Care Manag Sci. 2015 Mar 1;18(1):19-34.

    AbstractHospital readmission has become a critical metric of quality and cost of healthcare. Medicare anticipates that nearly $17 billion is paid out on the 20 % of patients who are readmitted within 30 days of discharge. Although several interventions such as transition care management have been practiced in recent years, the effectiveness and sustainability depends on how well they can identify patients at high risk of rehospitalization. Based on the literature, most current risk prediction models fail to reach an acceptable accuracy level; none of them considers patient's history of readmission and impacts of patient attribute changes over time; and they often do not discriminate between planned and unnecessary readmissions. Tackling such drawbacks, we develop a new readmission metric based on administrative data that can identify potentially avoidable readmissions from all other types of readmission. We further propose a tree-based classification method to estimate the predicted probability of readmission that can directly incorporate patient's history of readmission and risk factors changes over time. The proposed methods are validated with 2011-12 Veterans Health Administration data from inpatients hospitalized for heart failure, acute myocardial infarction, pneumonia, or chronic obstructive pulmonary disease in the State of Michigan. Results shows improved discrimination power compared to the literature (c-statistics >80 %) and good calibration.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…