• Neuron glia biology · Feb 2011

    Review

    Brain-derived neurotrophic factor from microglia: a molecular substrate for neuropathic pain.

    • Tuan Trang, Simon Beggs, and Michael W Salter.
    • Program in Neurosciences and Mental Health, Hospital for Sick Children, Department of Physiology, University of Toronto and University of Toronto Centre for Study of Pain, Toronto, Ontario, Canada.
    • Neuron Glia Biol. 2011 Feb 1;7(1):99-108.

    AbstractOne of the most significant advances in pain research is the realization that neurons are not the only cell type involved in the etiology of chronic pain. This realization has caused a radical shift from the previous dogma that neuronal dysfunction alone accounts for pain pathologies to the current framework of thinking that takes into account all cell types within the central nervous system (CNS). This shift in thinking stems from growing evidence that glia can modulate the function and directly shape the cellular architecture of nociceptive networks in the CNS. Microglia, in particular, are increasingly recognized as active principal players that respond to changes in physiological homeostasis by extending their processes toward the site of neural damage, and by releasing specific factors that have profound consequences on neuronal function and that contribute to CNS pathologies caused by disease or injury. A key molecule that modulates microglia activity is ATP, an endogenous ligand of the P2 receptor family. Microglia expresses several P2 receptor subtypes, and of these the P2X4 receptor subtype has emerged as a core microglia-neuron signaling pathway: activation of this receptor drives the release of brain-derived neurotrophic factor (BDNF), a cellular substrate that causes disinhibition of pain-transmitting spinal lamina I neurons. Converging evidence points to BDNF from spinal microglia as being a critical microglia-neuron signaling molecule that gates aberrant nociceptive processing in the spinal cord. The present review highlights recent advances in our understanding of P2X4 receptor-mediated signaling and regulation of BDNF in microglia, as well as the implications for microglia-neuron interactions in the pathobiology of neuropathic pain.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…