-
Investigative radiology · May 2013
Integrated whole-body PET/MR hybrid imaging: clinical experience.
- Harald H Quick, Carl von Gall, Martin Zeilinger, Marco Wiesmüller, Harald Braun, Susanne Ziegler, Torsten Kuwert, Michael Uder, Arnd Dörfler, Willi A Kalender, and Michael Lell.
- Institute of Medical Physics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany. Harald.Quick@imp.uni-erlangen.de
- Invest Radiol. 2013 May 1;48(5):280-9.
ObjectivesIntegrated whole-body positron emission tomography (PET)/magnetic resonance (MR) scanners have recently been introduced and potentially offer new possibilities in hybrid imaging of oncologic patients. Integration of PET in a whole-body MR system requires new PET detector technology and new approaches to attenuation correction of PET data based on MR imaging. The aim of this study was to evaluate the clinical performance and image quality parameters of integrated whole-body PET/MR hybrid imaging in intraindividual comparison with PET/CT in oncologic patients.Materials And MethodsEighty patients underwent a single-injection, dual-imaging protocol including whole-body PET/computed tomography (CT) and subsequent whole-body PET/MR hybrid imaging. Positron emission tomography/computed tomography was performed after adequate resting time (73 ± 13 minutes post injectionem of 227 ± 52.7 MBq Fluor-18-Fluordesoxyglucose, 3 minutes of acquisition time for each of 7 bed positions), followed by PET/MR (172 ± 33 minutes post injectionem, 10 minutes acquisition time for each of 4 bed positions). Positron emission tomographic data for both modalities were reconstructed iteratively. Two observers evaluated the following parameters: qualitative correlation of tracer-avid lesions in PET/CT versus PET/MR and PET image quality of PET/CT versus PET/MR. Magnetic resonance image quality of standard sequences (T1-weighted, T2-weighted), performance of the Dixon sequence for MR-based attenuation correction in comparison with corresponding T1-weighted images, artifacts in PET/MR data, and spatial coregistration of PET and MR data were evaluated by another observer.ResultsIn 70 of the 80 patients, both image data sets were complete. In these patients, 192 tracer-avid lesions were identified on PET/CT; 195, on PET/MR. A total of 187 lesions were identified concordantly by both modalities, and this corresponds to an agreement rate of 97.4%. The overall PET image quality was rated good to excellent for PET from PET/CT (12/28, excellent, 42.9%; 16/28, good, 57.1%; 0/28, poor, 0.0%) and slightly superior compared with PET from PET/MR, which was rated good (3/28, excellent, 10.7%; 20/28, good, 71.4%; 5/28, poor, 17.9%) in a subset of 28 patients. The overall image quality of the MR image data sets in all 70 of the 80 patients was rated excellent (260/280, excellent, 92.8%; 15/280, good, 5.4%; 5/280, poor, 1.8%). The Dixon sequence and conversion to μ-maps for MR-based attenuation correction provided robust tissue segmentation in all 280 bed positions of the acquired PET/MR data. No artifacts such as elevated noise and radiofrequency disturbances related to hardware cross talk between the PET and MR components in the hybrid system could be detected in the MR images. No major spatial mismatches between PET and MR data were detected.ConclusionsIntegrated PET/MR hybrid imaging is feasible in a clinical setting with similar detection rates as those of PET/CT. Attenuation correction can be performed sufficiently with Dixon sequences, although bone is disregarded. The administration of specific radiotracers and dedicated imaging sequences will foster this hybrid imaging modality in various indications.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.